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1 Preliminaries

To obtain a finite sample bound on the error of our algorithm, we require a mixing condition on the
Markov chain induced by a given fixed policy in an MDP. Specifically we assume that the Markov
chain uniformly quickly forgets its past. For such chains, we present here an extension of Bernstein’s
inequality based on Samson [1].

Let x1, . . . ,xn be a time-homogeneous Markov chain with transition kernel T (·|·) taking values in
some measurable space X . Consider the concentration of the average of the Markov Process:

(x1, f(x1)), . . . , (xn, f(xn)), (1)
where f : X → [0, b] is a fixed measurable function. To arrive at a concentration inequality, we
need a characterization of how fast (xi) forgets its past.

Let T i(·|x) be the i-step transition kernel: T i(A|x) = Pr{xi+1 ∈ A |x1 = x} (for all A ⊂ X
measurable). Define upper-triangular matrix Γn = (γij) ∈ Rn×n as:

γ2
ij = sup

(x,y)∈X 2

‖T j−i(·|x)− T j−i(·|y)‖TV, (2)

for 1 ≤ i < j ≤ n and let γii = 1 (1 ≤ i ≤ n). The operator norm of this matrix ‖Γn‖
w.r.t. the Euclidean distance, is a measure of dependence for the random sequence x1,x2, . . . ,xn.
For example with independent xi’s, Γn = I and ‖Γn‖ = 1. In general ‖Γn‖, which appears in our
concentration inequalities for dependent sequences, can grow with n. We can see that the “effective”
sample size is n/ ‖Γn‖2.

We say that a time-homogeneous Markov chain uniformly quickly forgets its past if:

τ = sup
n≥1
‖Γn‖2 < +∞. (3)

We refer to τ as the forgetting time of the chain. Conditions under which a Markov chain uniformly
quickly forgets its past are of major interest. For further discussion on this, see [2].

The following result from [2] is a trivial corollary of Theorem 2 of [1]. Samson’s result is stated for
empirical processes and can be considered as a generalization of Talagrand’s inequality to dependent
random variables.
Theorem 6 ([2]). Let f be a measurable function on X whose values lie in [0, b], (xi)1≤i≤n be a
homogeneous Markov chain taking values in X with forgetting time τ . Let z = 1

n

∑n
i=1 f(xi). For

all ε ≥ 0:

P (z − E [z] ≥ ε) ≤ exp

(
− ε2 n

2bτ(E [z] + ε)

)
,

P (E [z]− z ≥ ε) ≤ exp

(
− ε2 n

2bτE [z]

)
.
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We use the above concentration theorem to provide a finite sample bound on the error of regression
with non i.i.d. data.

2 Proof of Theorem 4

Proof. To begin the proof of the main theorem, first note that we can write the TD-errors as the
sum of Bellman errors and some noise term: δt = eV (xt) + ηt. These noise terms form a series of
martingale differences, as their expectation is 0 given all the history up to that point:

E [ηt|x1 . . .xt, r1 . . . rt−1] = 0. (4)

We also have that the Bellman error is linear in the features, thus in vector form:

δ = Xw + η. (5)

Using random projections, in the compressed space we have:

δ = (XΦ)(ΦTw) + b + η, (6)

where b is the vector of bias due to the projection. We have from Lemma 1 that with probability
1− ξ/4, for all x ∈ X :∣∣(xTΦ)(ΦTw)− eV (x)

∣∣ =
∣∣(xTΦ)(ΦTw)− xTw

∣∣
≤ ε

(ξ/4)
prj ‖w‖‖x

T ‖.

Thus, b is element-wise bounded in absolute value by ε
(ξ/4)
prj ‖w‖ with high probability. The

weighted L2 error in regression to the TD-error as compared to the Bellman error will be:∥∥∥xTΦw
(Φ)
ols − eV (x)

∥∥∥
ρ

=
∥∥(xTΦ)(XΦ)†[(XΦ)(ΦTw) + b + η]− eV (x)

∥∥
ρ

=
∥∥(xTΦ)(ΦTw)− eV (x) + (xTΦ)(XΦ)†b + (xTΦ)(XΦ)†η

∥∥
ρ

≤
∥∥(xTΦ)(ΦTw)− eV (x)

∥∥
ρ
+
∥∥(xTΦ)(XΦ)†b

∥∥
ρ
+
∥∥(xTΦ)(XΦ)†η

∥∥
ρ

≤ ε
(ξ/4)
prj ‖w‖‖x‖ρ +

∥∥(xTΦ)(XΦ)†b
∥∥
ρ
+
∥∥(xTΦ)(XΦ)†η

∥∥
ρ
.

The second term is the regression to the bias, and the third term is the regression to the noise.
We present lemmas that bound these terms. The theorem is proved by the application and union
bounding of of Lemmas 9, 11 and 1 with ξ0 = ξ/4.

2.1 Bounding the Regression to Bias Terms

To bound the regression to the bias term, we need the following concentration lemmas based on
Theorem 6 for fast mixing Markov chains:
Lemma 7. Under the conditions of Theorem 6, for any 0 < ξ < 1, w.p. 1− ξ:

z ≤ 2E [z] +
4bτ

n
log

1

ξ
. (7)

Proof. Since E [z] ≥ 0, using Theorem 6 we have for any ε > 0:

P (z − 2E [z] ≥ ε) = P (z − E [z] ≥ E [z] + ε) (8)

≤ exp

(
− (E [z] + ε)2 n

2bτ(2E [z] + ε)

)
(9)

≤ exp

(
− (E [z] + ε)n

4bτ

)
(10)

≤ exp
(
− ε n
4bτ

)
. (11)

The lemma follows by solving for ε.
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Lemma 8. Under the conditions of Theorem 6, for any 0 < ξ < 1, w.p. 1− ξ:

E [z] ≤ 2z +
8bτ

n
log

1

ξ
. (12)

Proof. Since E [z] ≥ 0, using Theorem 6 we have for any ε > 0:

P (E [z]− 2z ≥ ε) = P (E [z]− z ≥ (E [z] + ε)/2) (13)

≤ exp

(
− (E [z] + ε)2 n

8bτE [z]

)
(14)

≤ exp

(
− (E [z] + ε)n

8bτ

)
(15)

≤ exp
(
− ε n
8bτ

)
(16)

(17)

The lemma follows by solving for ε.

Lemma 9 (Bounding regression to the bias). Under the conditions of Theorem 4 and assuming inner
products are preserved in Lemma 1 with ε(ξ/4)

prj , with probability no less than 1− ξ/2:

∥∥(xTΦ)wX

∥∥
ρ
≤ 11αε

(ξ/4)
prj ‖w‖‖x‖ρ

√
1

dν
+ 4αε

(ξ/4)
prj ‖w‖

√
dτ

nν
log

d

ξ1
. (18)

Proof. Define wX = (XΦ)†b. Also define ‖.‖n to be the weighted L2 norm uniform on the sample
set X:

‖f(x)‖2n =
1

n

n∑
i=1

(f(Xi))
2. (19)

We start by bounding the empirical norm ‖(xTΦ)wX‖n. Given that (XΦ)wX is the OLS regression
to the bias on the observed points, its sum of squared errors should not be greater than any other
linear regression, including the vector 0, thus ‖(xTΦ)wX − b(x)‖n ≤ ‖b(x)‖n. We get:

‖(xTΦ)wX‖n ≤ ‖(xTΦ)wX − b(x)‖n + ‖b(x)‖n
≤ 2‖b(x)‖n ≤ 2ε

(ξ/4)
prj ‖w‖‖x‖n. (20)

LetW = {u ∈ Rd s.t. ‖u‖ ≤ 1}. Let S ⊂ W be an ε-grid cover ofW:

∀v ∈ W ∃u ∈ S : ‖u− v‖ ≤ ε. (21)

It is easy to prove (see e.g. Chapter 13 of [3]) that these conditions can be satisfied by choosing a
grid of size |S| ≤ (3/ε)d (S fills up the space within ε distance). Applying union bound to Lemma 8
(let f(x) = ((xTΦ)u)2) for all elements in S, we get with probability no less than 1− ξ/4, for all
u ∈ S:

‖(xTΦ)u‖2ρ ≤ 2‖(xTΦ)u‖2n +
8α2τ

n
log

4|S|
ξ
, (22)

which yields the following after simplification:

‖(xTΦ)u‖ρ ≤
√
2‖(xTΦ)u‖n + α

√
8τ

n
log

4|S|
ξ
. (23)
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Let w′X = wX/‖wX‖. For any X, since w′X ∈ W , there exists w′′ ∈ S such that ‖w′X−w′′‖ ≤ ε.
Therefore, under event (23) we have:∥∥(xTΦ)wX

∥∥
ρ
/ ‖wX‖ =

∥∥(xTΦ)w′X
∥∥
ρ

(24)

≤
∥∥(xTΦ)(w′X −w′′)

∥∥
ρ
+
∥∥(xTΦ)w′′

∥∥
ρ

(25)

≤
∥∥xTΦ

∥∥
ρ
‖w′X −w′′‖+

√
2
∥∥(xTΦ)w′′

∥∥
n

+α
√

(8τ/n) log(4|S|/ξ) (26)

≤ α‖x‖ρε+
√
2
∥∥(xTΦ)(w′′ −w′X)

∥∥
n
+
√
2
∥∥(xTΦ)w′X

∥∥
n

+α
√

(8τ/n) log(4|S|/ξ) (27)

≤ α‖x‖ρε+
√
2α‖x‖nε+

√
2
∥∥(xTΦ)w′X

∥∥
n

+α
√

(8τ/n) log(4|S|/ξ) (28)

≤
√
2
∥∥(xTΦ)wX

∥∥
n
/ ‖wX‖+ αε(‖x‖ρ +

√
2‖x‖n)

+α
√

(8τ/n) log(4|S|/ξ). (29)

Line (26) uses Equation (23), and we use Equation (21) in lines (27) and (28). Using the definition,
we have that ‖wX‖ ≤

∥∥(XΦ)†
∥∥ ε(ξ/4)

prj ‖w‖
√
n ≤ ε

(ξ/4)
prj ‖w‖

√
1/ν. Thus, using Equation (20) we

get: ∥∥(xTΦ)wX

∥∥
ρ
≤
√
8ε

(ξ/4)
prj ‖w‖‖x‖n + αε

(ξ/4)
prj ‖w‖ε

√
1/ν

(
‖x‖ρ +

√
2‖x‖n

)
+αε

(ξ/4)
prj ‖w‖

√
8τ

nν
log

4|S|
ξ
. (30)

Using Lemma 7 on the squared norm of x, we get with probability no less than 1− ξ/4:

‖x‖2n ≤ 2‖x‖2ρ +
4τ

n
log

4

ξ
, (31)

which yields the following after simplification:

‖x‖n ≤
√
2‖x‖ρ + 2

√
τ

n
log

4

ξ
. (32)

Setting ε = 1/
√
d, using Equation (32) and substituting |S| into (30) we get:∥∥(xTΦ)wX

∥∥
ρ
≤ (8 + 3α

√
1/dν)ε

(ξ/4)
prj ‖w‖‖x‖ρ

+(
√
32 + α

√
8/dν)ε

(ξ/4)
prj ‖w‖

√
τ

n
log

4

ξ

+αε
(ξ/4)
prj ‖w‖

√
8τ

nν
log

4(3
√
d)d

ξ
. (33)

Since d ≥ 10, ν ≤ α2/d and α ≥ 1 we have:∥∥(xTΦ)wX

∥∥
ρ
≤ 11α

√
1

dν
ε
(ξ/4)
prj ‖w‖‖x‖ρ

+9α

√
1

dν
ε
(ξ/4)
prj ‖w‖

√
τ

n
log

4

ξ

+3αε
(ξ/4)
prj ‖w‖

√
dτ

nν
log

d

ξ
. (34)

Union bounding over the events of Eqn (22) and (31) gives the lemma after simplification.
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2.2 Bounding the Regression to Noise Terms

To bound the regression to the noise, we need the following lemma on martingales:

Lemma 10. Let y be a vector of size n×1, in which row t is a function of xt. Then with probability
1− ξ we have:

|yT η| ≤ δmax‖y‖
√

2 log
2

ξ
. (35)

Proof. This is a simple application of a concentration inequality on martingales.

Lemma 11 (Bounding regression to the noise). Under the conditions of Theorem 4 and assuming
inner products are preserved in Lemma 1 with ε(ξ/4)

prj , with probability no less than 1− ξ/4:

∥∥(xTΦ)(XΦ)†η
∥∥
ρ
≤ 2αδmax ‖x‖ρ

√
κd

nν
log

d

ξ
. (36)

Proof. For all i ∈ {1, . . . , d}, define the vector ed×1
i to have 1 on the ith row and be 0 elsewhere.

Using union bound on Lemma 10, we have with probability no less than 1− ξ/4:

∀i :
∣∣eTi (XΦ)T η

∣∣ ≤ δmax‖XΦ‖

√
2 log

8d

ξ
. (37)

For any fixed x ∈ X , define yT = (xTΦ)((XΦ)T (XΦ))−1. We have:∣∣(xTΦ)(XΦ)†η
∣∣ =

∣∣yT (XΦ)T η
∣∣ (38)

=

∣∣∣∣∣
d∑
i=1

(yTei)e
T
i (XΦ)T η

∣∣∣∣∣ (39)

≤
d∑
i=1

∣∣yTei
∣∣ ∣∣eTi (XΦ)T η

∣∣ (40)

≤ δmax‖XΦ‖

√
2 log

8d

ξ
‖y‖1 (41)

≤ δmax‖XΦ‖

√
2d log

8d

ξ
‖y‖ . (42)

Therefore we get:

∥∥(xTΦ)(XΦ)†η
∥∥
ρ
≤ δmax‖XΦ‖

∥∥(xTΦ)((XΦ)T (XΦ))−1
∥∥
ρ

√
2d log

8d

ξ
(43)

≤ αδmax ‖x‖ρ ‖XΦ‖
∥∥((XΦ)T (XΦ))−1

∥∥√2d log
8d

ξ
(44)

≤ αδmax ‖x‖ρ

√
2κd

nν
log

8d

ξ
, (45)

which gives the lemma after simplification.
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3 Proof of Lemma 3

Proof. We have that V π is the fixed point to the Bellman operator (i.e. T V π = V π), and that the
operator is a contraction with respect to the weighted L2 norm on the stationary distribution ρ [4]:

‖T V (x)− T V ′(x)‖ρ ≤ γ ‖V (x)− V ′(x)‖ρ . (46)

We thus have:

‖V π(x)− (V (x) + ψ(x))‖ρ ≤ ‖V π(x)− T V (x)‖ρ+ ‖(T V (x)− V (x))− ψ(x)‖ρ (47)

≤ ‖T V π(x)− T V (x)‖ρ + ε ‖T V (x)− V (x)‖ρ (48)

≤ γ ‖V π(x)− V (x)‖ρ
+ε ‖T V (x)− T V π(x)‖ρ + ε ‖V π(x)− V (x)‖ρ (49)

≤ (γ + εγ + ε) ‖V π(x)− V (x)‖ρ . (50)

4 Proof of Lemma 4

Proof. Let ε = (γ0 − γ)/(1 + γ), c4 = 25600 and c5 = 64. Substituting d, and n into Theorem 2,
after simplification, with probability 1 − ξ we get: ‖xTΦw

(Φ)
ols − xTw‖ρ(x) ≤ ε

∥∥xTw
∥∥
ρ
. Proof

follows immediately by an application of Lemma 3.

5 CBEBF With Compressed Ridge Regression

The dependence of the bound of Theorem 2 on the smallest eigenvalue of the empirical gram matrix
can be linked to the properties of the pseudo inverse and its use in OLS regression. To avoid such
dependence, we might need to use an extra level of regularization in the compressed space.

One possible solution is the use of ridge regression instead of OLS in the inner loop of our algorithm.
The detailed analysis of the error rate of such algorithm is beyond the scope of this work, but
we expect the dependence on ν to be replaced by the regularization factor of the ridge regression,
denoted by λ, with the addition of an extra bias factor. An optimal choice for λ can be found either
using an upper bound on the error rate, or empirically using cross validation.
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