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High-level Summary

Motivation: The goal of conventional RL is finding a policy that maximizes the expected return. This,
however, ignores the distribution of returns. If we want to design a risk-aware RL agent, knowledge
of the return distribution can be usetul.
Distributional RL:

e Conventional: Learn the probability distribution function of return

e This work: Learn the characteristic function of returns

Q: Why should we care?

e A new representation opens up the possibility of designing new algorithms
o Fitting a PDF using MLE might be intractable

Contributions:

e Bring the frequency domain representation of uncertainty of returns to RL
o Algorithm: Characteristic Value Iteration

e Error Propagation theory

e Function approximation and covering number properties

From Distributional RL to Characteristic Value Function

Environment

Consider a discounted Markov Decision Process (MDP)
(X, A, R,P,v). Return of following a policy 7 starting from
state x:

Xit1 ~ P(| Xy, Ay)

Ay ~m(-| X
: ﬂ-( | t) Rt ~/ R(’Xt,At)

i>0

The (conventional) value function V7™ is the first moment of
this r.v., 1.e., V”(x) = [GW(XQ)‘XO — ZIZ‘]
Agent

We have G™(z) = Ry + 7> ;507 ' Rit1 = Ro + 7G™(X'), with X' ~ P™(:| Xy = z). The probability
distribution (law) of G™(x) is the same as the distribution of Ry +vG™(X"’), i.e.,

G™(z) 2 Ry +7G™(X). (Distributional Bellman Equation)

Let us compute the CF of both sides:
i [exp (jwG™ (x))] = E[exp (jw (BT (z) + G (X")))],

© [exp (JwyG™ (X)) | X = 2] = g () (w) /Pﬁ(dy\ﬁ)caw(y) (Yw).

CG™ () (w) — Vw € R

— CR™(2) (CU)

Denote the CF of the reward cg~(;)(w) by R(w; z), and the CF of the return car(z) (W) by V™ (w; z). We
call the function V™ : R x X — C; the Characteristic Value Function (CVF).

Overview of Characteristic Functions

Given a real-valued r.v. X with the probability distribution p, its corresponding CF cx : R — C is

w € R.

ex(w) 2 E [X] = / exp(jrw)p(dz),

Closely related to Fourier transform of p.
Bijection relationship with p, i.e., it we know one, we can know the other one.
If X and Y are two (conditionally) independent random variables, cx+v (w) = c¢x (w)cy (w).

Cax+b(w) = el ey (aw).

Uniform Cauchy
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Characteristic Value Function

Bellman equation in the frequency domain:

~S ~

V™ (w;2) = R(w; ) / P (dyl2) V™ (w5 )

Bellman operator between the CF functions:

~ ~ ~

(T™V)(w;2) £ R(w;2) / P (dy|2)V (: ). 1

Bellman equation (compact): V™ = TV~
This new Bellman operator is a contraction, but not with re-
spect to the supremum norm.

Given V4, V5 : R x X — R, we define "
Vi(w;z) — Vo(w; x)
doo.p(V1, V sup su )
p( 1 2) ZBEEME% WP ra—— ?{\0“0 ls\ﬂ/\
T (s ) — V(e
dy ,(V1, Vo) 2 Sup/ wiw) = Valw; 2) dw.
reX W

Lemma 1. Bellman operator T™ is contraction:

doo,p(vala TWVQ) S ’Vpdoo,p(vla ‘72)7 dl,p(Tﬂ-Vla Tﬂf/&) S ’Vp_ldl,p(vla ‘72)

Being a contraction leads to nice properties, such as having a unique fixed point. It also suggests a way
to find a CVE.

Characteristic Value Iteration

Q: How can we compute CVE? i
A: Since the Bellman operator is a contraction, we can find V™ using an iterative procedure similar
to Value Iteration.

‘71%?{,

Vk+1 — T7T‘7]c — Rpﬂf/k (k > 1) (1)

~ ~

CVEF converges. doo,l(‘?k—l—la Vﬂ) < wdoo,l(Vk, VW) < ... < v’“doo,l(f/l, VW) — ’}/kdoql(R, Vﬂ)

Performing CVI (1) exactly may not be practical:

e Large state space: V™ cannot be represented exactly; we have to use function approximator.
o [earning: We do not have access to P™, but only observed data.

If we can only perform V.1 ~ 17"V}, we have Approximate Characteristic Value Iteration (ACVI).
Suppose that we have a dataset D,, = {(X;, R;, X;)},, with X; ~ pu, X ~ P™(-|X;) and R; ~
R™(-|X;). For any fixed V, we can see that

~

3[RV (s XD)|X = X, = (@) (s X))

Finding a good approximation of 7™V given noisy samples is the regression problem.
Empirical Risk Minimization-based solution:

2
V(w; X;) — BV (yw; XD w(w)dw.

VEF 1=1

Similar to the usual Fitted Value Iteration procedure:

2

V41 ¢ argmin — Z V(X;) — (R + Vi (X)) .

T
VeF i—1
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Error Propagation for Approximate Characteristic Value Iteration
Q: How does the errors in ACVI affect the quality of the outcome estimate V?

‘71 %E—Févl,
(k> 1) (2)

Vk+1 — TWV]C -+ ék+1-

Theorem 2 (Error Propagation for ACVI — Simplitied). Consider the ACVI procedure (2) after K > 1
iterations. Assume that €;,(0;x) =0 forallx € Xand k =1,..., K + 1. We then have

~

K
doo,1 (Vi 41, V") < Zvi lEk+1-illoor + 7" doo, 1 (R, VT).
i=0

Q: How is the error in the frequency domain related to the error in the probability distribution
functions?
A: Error according to ||- H , translates to an error w.r.t. p + 1-smooth Wasserstein distance.

Let 7,(Q) = { f € CP(D Hfo) loo <1,0 <k <p}. For two probability distributions p1, u2, the p-
smooth Wasserstem dlstance is defined as

We,(1oiz) = sup | [ £(a) (@ (@) = dpaf)|

Given V, we denote V as its corresponding probability distribution function. Let us also define the
p-smooth Wasserstein between V; and V5:

ch (‘717 Vzw) = Sup ch (Vl('3 ), Vy ().

reX

Theorem 3 (Error in PDF — Simplified). Consider the same setting and assumption as in Theorem 2. Fur-
thermore, assume that the immediate reward distribution R™ (-|x) is Ry.-bounded. We then have

2V 2Ry _
WC2 (VK—I—17 Vﬂ-) \/ max

— (1l — )3/2 i=1,...,K+1

|€illa + 2" Rinax | -

A Study on Function Approximation Error and Covering Numbers

Q: How well can we approximate a CVF given a restrictive function space?
Let F;, be defined as the b-band-limited CVFE, i.e.,

T B o N yy———

Fo={V:iRxX5Ci: V(02)=1,V(wz)=0Vw|>b}.

The reward distribution R™ is S-smooth if for all
r e X,

colw| ™ < |R(w;z)| < er|w| 7.

Examples: exponential, uniform, gamma, etc.

Theorem 4. Consider function space Fy, and assume that ‘R is a B-smooth distribution. We have

<

C1 ~ ~
= V-2 p  bpth

p pp+5’

: C1
inf |
VerFy

VT

sup inf

~

Viey Vesy

Some Remarks:

e The -smooth reward distributions can be well-approximated within F;. Moreover, if we apply
T™ to a member of F;, the result can still be well-approximated within F.

e The function space F is very large.

e Similar results for much smaller space of band-limited smooth (in C*({2) sense) functions.

o Covering number result for the smooth band-limited function space:

— log N (e,

x| (z)

s—1

br? oo,l) < |X Slog(ZeTzT)

14+ -+
g,’l"’ LOOap) § Cb P

— log NV (e,



