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Abstract. Neural networks are susceptible to adversarial perturbations
that are transferable across different models. In this paper, we introduce
a novel model alignment technique aimed at improving a given source
model’s ability in generating transferable adversarial perturbations. Dur-
ing the alignment process, the parameters of the source model are fine-
tuned to minimize an alignment loss. This loss measures the divergence
in the predictions between the source model and another, independently
trained model, referred to as the witness model. To understand the ef-
fect of model alignment, we conduct a geometric analysis of the resulting
changes in the loss landscape. Extensive experiments on the ImageNet
dataset, using a variety of model architectures, demonstrate that pertur-
bations generated from aligned source models exhibit significantly higher
transferability than those from the original source model. Our source
code is available at https://github.com/averyma/model-alignment.

1 Introduction

Adversarial examples with small perturbations can mislead deep neural networks
to make wrong predictions [60]. It has been observed that perturbations created
to attack one model can also fool other models, which is known as adversarial
transferability [17]. The transferability of such perturbations has received signif-
icant attention recently since it poses practical concerns for the deployment of
machine learning systems in real-world applications [12,34,52].

One possible explanation for this transferability is that transferable pertur-
bations exploit similar features present in both the source and target models [27].
To see this, let us first consider the hypothesis that neural networks capture two
distinct types of features from data: semantic features and human-imperceptible
features. This hypothesis has been proposed and supported in [41, 62, 76]. We
provide a summary of their findings as follows. First, models learn semantic
features that align with human perception. The extraction of such features is
similar across different models, reflecting a shared understanding of the seman-
tics. Second, models learn human-imperceptible features, and their learning is
model-specific. For example, Ma et al . [41] demonstrated that the use of these
features varies based on models’ initialization and their optimization process,
while Wang et al . [62] discussed how model architecture can result in model-
specific interpretations of these features.

https://github.com/averyma/model-alignment
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Fig. 1: Attacking the aligned source model for more transferable perturba-
tions. We compare the transferability of ℓ∞-norm bounded perturbations (ϵ = 4/255)
generated using the source model before and after performing model alignment. The
result highlights the compatibility of model alignment with a wide range of attacks,
as perturbations generated from the aligned source model become more transferable.
Here, the source model is aligned using a witness model from the same architecture but
is initialized and trained independently. Results are averaged over all target models.

Features and vulnerabilities are highly correlated, as vulnerabilities often
stem from the exploitation of certain features [27]. In the context of transfer-
ability, the degree of similarity between those exploited features in the source and
target model is crucial. That is, the more similar the exploited features between
models, the more likely it is that the perturbation will successfully transfer. To
support this, Liu et al . [36] showed that different models have similar decision
boundaries (from learning similar features), thus enabling some perturbation
to be transferable across different models. However, some perturbations exploit
features that are specific to the source model. Qin et al . [54] demonstrated that
when maximizing the cross entropy loss to find adversarial examples, some per-
turbations fail to transfer since they are located at sharp local maxima unique
to the source model, which do not exist for the target model.

Motivated by these observations, we propose a model alignment technique
to modify the source model to encourage a similar feature extraction as other,
independently trained models, which we refer to as witness models.

Our goal is to transform any source model into one from
which attacks generate more transferable perturbations.

During the alignment process, the source model’s parameters are fine-tuned to
minimize an alignment loss, which measures the prediction divergence between
the source and witness models. Through this alignment process, the source model
learns to focus on a set of features that are similarly extracted by the witness
model. This allows attack algorithms to more effectively exploit features common
across models, leading to more transferable perturbations.

Because of the orthogonal nature of our approach, model alignment comple-
ments, rather than competes with, other attack algorithms. This synergy under-
scores our method’s key advantage: its broad compatibility with a wide range
of attack algorithms, as highlighted in Fig. 1. Extensive experiments on various
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combinations of architectures, transferability on individual target models, and
results with other attacks are included in Sec. 4.

We analyze the effect of the proposed alignment method, demonstrating that
perturbations generated from the source model exploit more semantic features
that are shared across different models. Additionally, we conduct a geometric
analysis to study the changes in the loss landscape resulting from this process.
The analysis explores the relationship between model alignment and the use of
soft labels [24,59,80]. Results show that there is a notable smoothing effect on the
loss surface of the model, which is consistent with prior findings that adversarial
examples from flatter maxima are more transferable [19, 54]. Our contributions
can be summarized as follows:

– We present a model alignment method to fine-tune the source model by
minimizing an alignment loss which measures the difference in the output
between the source model and the witness model.

– To understand the effect of model alignment, we conduct a geometric analysis
to study the changes in the loss landscape resulting from this process.

– Extensive experiments on ImageNet [31], using convolutional neural net-
works (CNNs) and Vision Transformers (ViTs) [15,37], demonstrate that per-
turbations generated from aligned source models exhibit significantly higher
transferability than those from the original source model. We demonstrate
that our alignment technique is compatible with a wide range of attacks.

2 Related Work

In this section, we provide a brief overview of approaches to generate more
transferable perturbations. For a more comprehensive review of research related
to adversarial transferability, we direct the reader to a recent survey [18].

2.1 Generating Transferable Perturbations

Existing work on improving the transferability of adversarial examples can be
categorized into four groups: data-augmentation-based methods [4,8,14,33,70,73,
88], optimization-based methods [13,22,35,39,63,71,79,84], model-modification-
based methods [2, 21,68,72], and ensemble-based methods [19,32,36,53].
Data-augmentation-based methods: Data augmentation prevents overfit-
ting in deep neural networks, with advanced techniques [10, 40, 78, 80] being
key for state-of-the-art generalization on large datasets like ImageNet. Build-
ing on this concept, several works have proposed the incorporation of various
data augmentation techniques into the attack algorithm. This integration aims
to prevent adversarial examples from overfitting to the source model, thereby
improving their transferability.
Optimization-based methods: Lin et al . [35] drew a parallel between gen-
erating transferable adversarial examples and training neural networks. In this
analogy, source models are the training data, adversarial perturbations are model
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parameters, and the target model is the testing data. Thus, transferability of ad-
versarial examples is akin to model generalization. Optimization-based methods,
such as momentum [13,35,88] and variance tuning [63, 74], initially designed to
improve model generalization, can similarly improve adversarial transferability.
Model-modification-based methods: Several studies have proposed meth-
ods to improve transferability by modifying the source model. Benz et al . [2]
showed that perturbations from models without batch normalization [28] are
more transferable. Methods like Linear Backpropagation (LinBP) [21] and Back-
ward Propagation Attack (BPA) [72] focus on non-linear activations and modify
the derivative of ReLU. Wu et al . [68] showed that increasing gradients from skip
connections can improve transferability. A key advantage of our approach is its
model-agnostic nature: alignment can be applied without changing the model’s
forward or backward pass, improving any source model’s ability to generate more
transferable perturbations. In contrast, other methods require changes, such as
those seen in LinBP and BPA, or even complete retraining.
Ensemble-based methods: Another line of approaches involves the use of
multiple models for generating adversarial examples. Liu et al . [36] were among
the first to propose enhancing transferability by attacking an ensemble of models,
with the rationale being that a perturbation capable of fooling multiple models is
more likely to deceive the target model. More recently, Gubri et al . [19] proposed
constructing an ensemble of source models by collecting weights along the fine-
tuning trajectory of a trained model.

2.2 Understanding Adversarial Transferability

Several works have focused on understanding the transferability of adversarial
perturbations [64, 69, 82, 87], with some analyzing from a geometric perspec-
tive [6, 16, 36, 83]. Liu et al . [36] showed that weakly transferable adversarial
examples often fall into local maxima of the source model. They found that
some perturbations fail to transfer because they reside in tiny pockets corre-
sponding to the ground truth label, present in the source model but not in the
target model. Similarly, Gubri et al . [19] hypothesized that adversarial exam-
ples at flat loss maxima transfer more effectively than those at sharp maxima.
Motivated by these insights, in Sec. 3.3, we extend this geometric perspective
to examine how the alignment method influences the source model’s loss surface
geometry to generate more transferable adversarial examples.

3 Method

We present the model alignment process and understand why aligned models
can generate more transferable perturbations.

3.1 Preliminary

In this work, we focus on neural networks used for classification tasks. Let us
consider a neural network designed for m-class classification, represented as a
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series of function compositions:

f(x) = (ϕ[l] ◦ ϕ[l−1] ◦ . . . ◦ ϕ[1])(x),

where each ϕ[i] represents an operation within the network, which could be a
linear transformation (such as a fully connected layer), an activation function,
or a pooling operation. The parameters of the neural network are collectively
denoted as θ. The intermediate outputs of these operations are often referred to
as hidden representations. We denote them by z[i], where z[i] = ϕ[i](z[i−1]) for
i = 1, 2, . . . , l, and the initial input is z[0] = x. Additionally, we incorporate the
softmax function into the neural network’s definition. Specifically, in the final
layer, we have ϕ[l] = softmax(z[l−1]), where z[l−1] are called the logits. With this
definition, the output of this network, f(x), can be interpreted as a probabil-
ity distribution over the m classes where each component f(x)i represents the
probability of the input x belonging to class i.

3.2 Model Alignment

The goal of model alignment is to modify the source model such that it can
extract features similar to those of other models (the witness model). We denote
the parameters of the source model and the witness model as θs and θw, respec-
tively. Let us consider the following point-wise formulation of the alignment loss:

ℓa(x, θs, θw) = d(z[q]s (x), z[q]w (x)), (1)

where the metric d measures the output difference at layer q between the models.
Model alignment is a fine-tuning process. During alignment, the parameters

of the source model are updated to minimize this alignment loss which captures
the differences between models’ output. Specifically, when q = l, the alignment
loss measures the divergence between the probability distributions generated
by the two models. In this scenario, the Kullback-Leibler (KL) divergence is
particularly suitable, due to its effectiveness in measuring distribution differences
and its relative ease of implementation in practice. Our analysis and primary
experimental results are based on model alignment in the output space, using KL
divergence as d. We also explore total variation and alignment in the embedding
space (i.e., q < l), which is detailed in our ablation study.

The point-wise loss defined in (1) focuses on aligning the source model with
a single witness model. However, alignment can also be extended to multiple
witness models to further improve the alignment process. This process involves
using a set of witness models, denoted as Θ, with the number of witness models
represented by |Θ|. Finally, the update rule for the parameters of the source
model based on SGD can be written as

θs(t+ 1) = θs(t)− η
1

|B| |Θ|
∑
x∈B

∑
θw∈Θ

∇ℓa(x, θs(t), θw),

where B represents the mini-batch.
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Fig. 2: A frequency-domain visualization of the differences in the pertur-
bation generated using the original source model and the aligned source
model. We compare the magnitude of the DCT coefficients between the perturbations
generated by the two models: |DCT(∆xa)| − |DCT(∆xs)|. The pronounced brightness
in the top-left region of the spectrum indicates that the primary differences lie within
the low-frequency range, which is typically associated with semantic features.

3.3 Understanding Model Alignment

We now understand the model alignment approach from two perspectives: se-
mantic feature exploitation and geometric analysis of the loss surface. The anal-
ysis in this section uses ResNet50 and ViT-B/16 as source models, which are
aligned with ResNet18 and ViT-T/16 as their respective witness models. We
consider ℓ∞-norm adversarial examples generated using 20 iterations of PGD [44]
with ϵ = 4/255 and α = 1/255. We use ∆xs and ∆xa to represent the pertur-
bations generated based on the source and aligned models, respectively.

Aligned Model Exploits More Semantic Features. To verify that attacks
applied to the aligned model exploit more semantic features, we compare the
perturbations generated using the original and aligned source models. Adver-
sarial perturbations are imperceptible and difficult to characterize in terms of
the specific features they exploit in the spatial domain. However, by analyzing
perturbations in the frequency domain, we can observe the types of features
each model exploits. Previous work has shown that semantic features mostly
concentrate around the low-frequency end of the spectrum [41, 62, 76]. We con-
sider discrete cosine transform (DCT) [1] and compare the DCT coefficients of
the perturbations generated from the source and the aligned model, denoted
as DCT(∆xs) and DCT(∆xa), respectively. The results are averaged over 1000
randomly sampled images from the ImageNet test set. Since our interest lies
in the magnitude of these coefficients, we visualize the difference by computing
|DCT(∆xa)| − |DCT(∆xs)|.

The results are illustrated in Fig. 2. We observe that the differences between
the perturbations are predominantly located in the top-left corner of the DCT
spectrum, indicating that they primarily differ in the amount of low-frequency
information. This result shows that adversarial perturbations generated from the
aligned exploit more low-frequency, semantic features.
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Fig. 3: Visualization of the loss surface around adversarial perturbations
for original and aligned ResNet50 and ViT-b/16. Each plot illustrates the loss
surface projected on the plane defined by the adversarial perturbation direction and
its orthogonal vector. We examine the loss landscape around a clean data point (cyan)
and an ℓ∞-bounded adversarially perturbed data point (red), generated from the source
(∆xs) and aligned models (∆xa). Perturbations from the original source models are at
sharper loss maxima, while those from the aligned model are on flatter surfaces.

Model Alignment Yields Smoother Loss Surface. Previous works have
studied the connection between perturbation from sharp loss maxima and their
poor transferability [19,54]. We extend this geometric perspective by examining
how model alignment affects the loss surface geometry of the source model,
particularly in its capacity to generate more transferable adversarial examples.

First, consider when (1) measures the KL divergence between the two mod-
els’ predictions. During alignment, the source model’s parameters are fine-tuned
using soft labels from the witness model’s outputs. Training deep neural net-
works with soft labels prevents the model from becoming overly confident in
its predictions, thereby improving generalization [24, 25, 47, 59]. Compared to
using hard, one-hot encoded labels, it has been shown that training with soft
labels implicitly regularizes the norm of the input Jacobian [5, 81], and leads to
smoother decision boundaries [61,80].

To understand why model alignment can be helpful, we begin by identifying
a data point for which the perturbation, when generated based on the original
source model, fails to transfer to the target model, but the perturbation gener-
ated using the aligned model misleads the target model. In Fig. 3, we visualize
the loss surface surrounding this data point, spanned by two pairs of orthogonal
vectors: ∆xs, ∆x⊥

s , ∆xa and ∆x⊥
a . Here, ∆x⊥

s and ∆x⊥
a are randomly selected

orthogonal vectors and are also bounded by the same ϵ. In each plot, the center
of the plot (cyan) represents the clean data point, and the adversarial example
is highlighted using the red marker.

We make two observations. First, the bright yellow region around the pertur-
bations generated from the original source model suggests that they are located
at sharp loss maxima. However, these same perturbations do not effectively cause
a significant increase in loss when applied to the target model. This observation
aligns with previous findings indicating that perturbations with poor transfer-
ability often correspond to sharp local maxima unique to the source model, which
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Table 1: Comparing the ℓ2-norm of the input gradient on the original source
model and the aligned source model. Results are averaged over 1000 randomly
selected ImageNet test samples. The norm decreases significantly when evaluated on
all three types of input, suggesting that the smoothing effect induced by the alignment
is more global, rather than being confined to specific cases of adversarial examples.

Data
ResNet50 VIT-B/16

Original Aligned Original Aligned
Clean 0.056 0.032 0.060 0.029

Gaussian-perturbed 0.057 0.032 0.063 0.029
PGD-perturbed 0.453 0.171 0.184 0.055

are not present in the target model [19,54]. Second, the loss surface around per-
turbations generated from the aligned model is noticeably flatter. This is in line
with prior findings that adversarial perturbations from flatter maxima tend to
be transferable [19,54]. It is noteworthy that the PGD attack does not explicitly
target flat maxima for generating adversarial examples. This observation leads
us to hypothesize that the smoothing effect induced by the alignment process is
more global, rather than being confined to specific cases of adversarial examples.

To verify this, we evaluate the change in the ℓ2-norm of the loss gradients with
respect to clean, Gaussian-perturbed (σ2 = 0.01), and PGD-perturbed inputs.
More formally, we compare ∥∇xℓ(x+∆x, y, θ)∥2 for ∆x ∈ {0,Gaussian,PGD}
for θ ∈ {θs, θa} over 1000 randomly sampled ImageNet test samples.

The results are summarized in Tab. 1. We observe a significant decrease in
gradient norm across all inputs, and the reduction is particularly pronounced
at PGD-perturbed data points. This decrease is consistent with the previous
finding which demonstrated a connection between the use of soft labels and
the smoothing of the loss surface [5, 81]. More importantly, this observation
explains the improved transferability with the aligned model. In Appendix C.2,
we discuss additional results on the change in the largest eigenvalue of input
Hessian, which is another popular metric in studying the smoothness of the loss
landscape [83]. To evaluate the similarity of models, we measure the change
in the KL divergence, prediction agreement, and the cosine similarity of input
gradients. The latter is crucial due to its role in the attack process. These results
are included in Appendix C.2.

4 Experiments

In this section, we present a series of experiment results to demonstrate the
improved ability of a given source model to generate transferable adversarial
perturbations. We study factors that can further improve the alignment process
and demonstrate the compatibility of our approach with a wide range of attacks.
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4.1 Experiment Setup

Model: We consider various neural network architectures as source, witness,
and target models. For CNNs, we include ResNet18 (Res18), ResNet50 (Res50),
ResNet101 (Res101) [23], VGG19 [57], DenseNet121 (DN121) [26], and Inception-
v3 (IncV3) [59]. For ViTs, our selection includes Swin Transformers (SWIN) [37],
ViT-T/16, ViT-S/16, and ViT-B/16 [15]. We follow the optimization schedule
described in the official Pytorch repository to train all models. Training and
model details are included in Appendix B.
Fine-tune: During alignment, all source models are fine-tuned for one epoch
using SGD with a momentum of 0.9, a cosine learning rate decay, and a linear
warmup. We sweep over 3 learning rates. No additional data is used, as fine-
tuning relies on the same training data used to train the source and witness
model. We use a batch size of 128 for CNNs and 512 for ViTs. For ViT-based
models, we follow [58] and gradients are clipped at a global norm of 1.
Dataset: We follow previous work [13,35,77] in which evaluations are based on
1000 randomly selected from the ImageNet test set. For a given source and target
model, these samples meet the following criteria: they are correctly classified by
both models, and the adversarial examples, when generated from each model,
lead to misclassifications in their respective originating models.
Attack method: We focus on non-targeted adversarial perturbations bounded
by the ℓ∞-norm. Unless otherwise stated, all perturbations are generated using
20 iterations of PGD with ϵ = 4/255 and α = 1/255. All target models have an
error rate of 100% under white-box PGD attacks. Results with different attack
methods and larger values of ϵ are included in the ablation study.
Metric: We measure transferability using the error rate, with a higher rate
indicating greater transferability. In the tables of this section, we first present
a row labeled ‘n/a’ to denote the error rate for perturbations generated by the
original source model. We then demonstrate the change in transferability after
alignment following the +/− sign. A larger change indicates a greater increase
in transferability resulting from using the aligned model. All results presented
in this section are obtained from the average of three independent runs.

4.2 Model Alignment Improves Transferability

To demonstrate the improved transferability of perturbations generated using
the aligned source model, we evaluate across a diverse set of neural network
architectures for both source and witness models, focusing on the transferability
to an extensive array of target models. Tab. 2 shows the original error rates and
their changes after using the aligned model. We make two key observations.

First, the model alignment approach can transform any given source model
into one from which the PGD attack generates more transferable perturbations.
Such an improvement can be observed across various combinations of source
and witness models and is evident in all evaluated target models. This clear
improvement validates our approach, showing that aligning the source model can
lead to the generation of more transferable adversarial perturbations. Notably,
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Table 2: Aligning the source model can lead to the generation of more
transferable adversarial examples. The result demonstrates the increase in error
rates when adversarial examples generated from aligned source models are applied to
different target models. Our method improves the transferability of adversarial exam-
ples generated from a wide range of architectures, including both CNNs and ViTs.

Source Witness
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

Res50

n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

Res50 +9.60 +9.90 +8.12 +6.59 +8.98 +4.79 +0.67 +0.65 +0.42 +2.65

VGG19 +8.30 +7.88 +7.41 +9.17 +9.93 +6.76 +0.75 +0.52 +0.17 +1.97

DN121 +9.39 +10.82 +8.40 +8.41 +12.41 +7.21 +1.87 +2.02 +0.38 +2.61

IncV3 +7.69 +7.52 +5.99 +5.56 +9.19 +8.23 +2.29 +0.30 +0.24 +3.01

ViT-B/16 −9.41 −19.39 −17.48 −10.04 −12.76 −8.49 −3.25 −2.69 −1.14 −4.17

SWIN −9.23 −16.21 −14.30 −7.27 −10.02 −5.53 −2.72 −2.93 −2.36 −2.73

VGG19

n/a 33.49 30.10 26.13 79.43 32.07 30.62 23.27 19.85 18.66 23.09

Res50 +7.19 +4.16 +2.76 +5.19 +7.62 +5.91 +3.45 +1.20 +1.36 +1.12

VGG19 +4.66 +2.10 +1.77 +7.30 +3.44 +1.74 +2.64 +0.68 +1.39 +0.90

DN121 +6.35 +3.52 +5.07 +10.60 +10.45 +5.03 +4.09 +2.36 +2.58 +1.31

IncV3 +4.91 +1.57 +1.66 +3.82 +4.94 +4.33 +2.70 +0.61 +0.61 +1.04

ViT-B/16 −4.34 −5.68 −5.01 −24.66 −5.11 −3.67 −0.83 −0.37 +0.77 −2.53

SWIN −3.24 −5.83 −4.01 −21.91 −6.48 −4.05 −1.11 −0.73 +0.64 −2.96

DN121

n/a 40.20 44.01 37.15 40.84 61.15 32.28 23.68 20.34 18.21 23.56

Res50 +11.67 +12.96 +8.37 +7.32 +11.68 +5.41 +1.69 +0.46 +1.00 +1.59

VGG19 +9.02 +6.38 +4.88 +12.34 +7.87 +3.77 +2.72 +0.04 +1.22 +0.94

DN121 +12.56 +11.60 +10.48 +9.10 +15.47 +6.84 +3.99 +1.59 +1.24 +1.86

IncV3 +8.08 +10.50 +9.88 +9.91 +12.76 +7.24 +3.81 +1.23 −0.02 +2.79

ViT-B/16 −3.08 −8.43 −7.78 −6.67 −12.96 −1.78 +2.06 +1.26 +1.22 −2.78

SWIN −4.13 −8.57 −5.34 −6.11 −10.21 −4.64 +0.54 −0.16 +1.21 −1.88

IncV3

n/a 30.68 27.49 25.02 33.47 30.98 51.80 22.99 18.77 17.72 20.94

Res50 +4.92 +6.59 +4.27 +5.49 +5.74 +4.49 +1.71 +2.26 +2.74 +2.23

VGG19 +4.65 +2.69 +3.10 +5.70 +3.39 +4.36 +1.05 −0.54 +0.38 +0.53

DN121 +4.50 +6.38 +2.13 +7.35 +6.52 +8.89 +3.54 +0.68 +1.41 +1.45

IncV3 +1.78 +3.91 +3.70 +3.53 +3.06 +8.75 +1.79 +0.49 +1.41 +1.75

ViT-B/16 +0.47 −1.13 −2.97 −0.77 −1.35 −8.20 +2.92 +1.64 +2.07 −0.23

SWIN −0.49 −3.36 −3.85 −3.29 −4.54 −12.82 +0.09 +0.76 +1.13 −1.34

ViT-B/16

n/a 23.05 19.67 18.30 21.83 21.96 21.52 36.44 44.58 51.27 21.22

Res50 +17.53 +12.89 +12.23 +14.83 +16.66 +15.76 +43.47 +37.17 +29.16 +21.16

VGG19 +10.89 +9.49 +9.77 +14.23 +12.65 +10.94 +39.63 +31.65 +21.30 +14.97

DN121 +17.15 +13.92 +12.28 +15.38 +17.68 +16.96 +47.36 +41.88 +31.22 +21.87

IncV3 +15.41 +11.87 +11.31 +15.09 +14.23 +16.46 +46.07 +40.39 +28.87 +19.92

ViT-B/16 +5.14 +2.04 +2.07 +4.79 +2.87 +4.53 +24.04 +23.14 +21.93 +6.34

SWIN +6.31 +5.75 +5.92 +8.12 +7.46 +7.28 +39.11 +36.49 +28.61 +14.62

both CNN and ViT-based source models can benefit from the alignment process.
Recent studies have shown that the transferability between ViTs and CNNs is
poor, and many attack algorithms do not generalize well to ViTs [45,50,65]. Our
model alignment method offers a promising solution to bridge this gap.

Second, we find that CNN-based source models generally benefit from align-
ing with other CNN-based models, rather than with ViT-based models. On the
other hand, the ViT-B/16 source model can benefit from aligning with witness
models from both CNN and ViT families. We provide a possible explanation
for this phenomenon. Previous studies have shown that ViTs and CNNs learn
distinctively different features [55, 86]. Specifically, Raghu et al . [55] focused on
early-layer representations learned by the two models and showed that more
ResNet layers are required to be modified to match hidden representations of a
ViT, compared to the other way around. In the context of model alignment, this
suggests an asymmetric behavior in the alignment process; namely, it might be
easier to align ViTs with CNNs than to align CNNs with ViTs.
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Choosing the witness model: The main goal of Tab. 2 is to demonstrate
that the improved transferability is not limited to particular choices of wit-
ness models. The result also highlights the effectiveness of a straightforward,
hyper-parameter-free self-alignment strategy. This is evident from the con-
sistent improvement observed when the source and witness models share the
same architecture, but are initialized and trained independently. The selection
of witness models is further explored in our ablation studies.

Regularization to prevent overfitting: A prolonged alignment process
may inadvertently cause overfitting to the witness model, thereby diminishing
the gains in transferability. To counteract overfitting, regularization methods can
be implemented. For example, we apply early stopping and limit the alignment
to a single epoch. Moreover, an ensemble of witnesses can be used to avert
overfitting to any singular witness model. Results with multiple witness models
are included in Appendix D.1. Furthermore, when aligning by minimizing KL
divergence, adjusting the temperature scaling within the softmax function can
be an effective measure to prevent the exact replication of the witness model’s
predictions by the source model.

4.3 Ablation Studies

We conduct several ablation studies to investigate factors that could further
improve the alignment process. Additionally, we demonstrate that our approach
is compatible with a wide range of attack algorithms.

Smaller Witness Model Might Boost Learning Shared Features. Re-
sults in Tab. 2 indicate that DN121, which has the fewest parameters, frequently
emerges as a more effective witness model. This motivates us to investigate the
role of the capacity of the witness model during the alignment. While several
factors contribute to a model’s capacity, such as its structure, the normalization
techniques, and its non-linear activations, our study primarily focuses on the
number of parameters as a proxy for capacity. With this in mind, we consider
three models each from the ResNet and ViT families.

Tab. 3 summarizes the results of the model capacity analysis, pointing to one
key observation. Model alignment is more effective when the witness models have
a smaller model capacity. For instance, when using Res101 as the source model,
alignment with the lower capacity Res18 as the witness model is more beneficial
than alignment with Res50. This matches the previous findings in Tab. 2.

We provide one interpretation of this observation. Smaller models might tend
to focus more on learning semantic features for generalization, as they lack the
capacity of larger models to learn imperceptible features. Therefore, when a
source model is aligned with a smaller model, it is steered towards learning more
semantic features that are commonly shared across different models, thereby
leading to more transferable perturbations.
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Table 3: Analyzing the impact of witness model capacity on the alignment
process. We observe a greater improvement in the transferability of adversarial per-
turbations when the source model is aligned with witness models of smaller capacity.

Source Witness
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

Res18
n/a 64.10 45.85 37.09 42.96 48.57 37.31 27.52 21.12 20.57 21.31

Res50 −1.94 +0.41 −0.74 +0.82 −1.24 −1.78 +0.26 +1.33 +0.42 +1.48

Res101 −5.13 −3.92 −2.70 −1.75 −1.39 −0.22 +0.53 +0.25 +0.03 +0.48

Res50
n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

Res18 +35.30 +26.56 +25.20 +24.38 +27.86 +19.18 +5.49 +2.85 +1.61 +9.60

Res101 +4.27 +3.02 +3.93 +3.61 +4.41 +3.60 +1.86 −0.54 +0.14 +1.36

Res101
n/a 38.84 54.63 62.95 39.24 49.93 34.77 23.01 20.12 19.07 22.90

Res18 +40.64 +35.11 +27.78 +29.63 +33.20 +28.42 +10.10 +5.70 +2.37 +13.99

Res50 +14.97 +19.56 +16.97 +13.50 +17.07 +10.41 +4.04 +0.98 +1.44 +4.81

ViT-T/16
n/a 28.77 23.45 21.05 25.41 25.45 25.22 63.89 40.47 29.62 22.97

ViT-S/16 +0.30 +0.70 +1.02 +2.76 +0.54 +0.69 +7.01 +3.77 +2.92 +0.42

ViT-B/16 +0.86 −0.18 −1.11 +1.15 +0.47 +0.81 +5.09 +4.32 +3.55 −1.57

ViT-S/16
n/a 24.27 20.48 18.86 21.85 21.90 22.96 47.34 52.09 43.85 23.87

ViT-T/16 +9.64 +6.65 +6.29 +8.51 +10.66 +7.58 +40.53 +32.27 +26.10 +12.35

ViT-B/16 +3.10 +1.21 +2.87 +3.75 +3.19 +3.36 +19.07 +17.44 +13.81 +4.73

ViT-B/16
n/a 23.05 19.67 18.30 21.83 21.96 21.52 36.44 44.58 51.27 21.22

ViT-T/16 +10.13 +9.71 +8.42 +10.71 +11.30 +9.89 +51.72 +44.99 +34.69 +20.01

ViT-S/16 +7.30 +4.57 +4.53 +4.75 +6.21 +6.34 +36.47 +35.66 +29.43 +12.00

Table 4: Improving transferability via embedding-space alignment. We focus
on Res50 as the source model and Res18 as the witness model. We observe improved
transferability when alignment is performed in the embedding space or when combining
output and embedding spaces.

Method
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN
n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

KL +35.30 +26.56 +25.20 +24.38 +27.86 +19.18 +5.49 +2.85 +1.61 +9.60

TV +26.04 +19.91 +11.88 +17.40 +20.66 +15.93 +5.70 +1.72 +0.85 +5.79

RKD [51] +2.95 +2.12 +2.80 +2.78 +3.35 +4.09 −1.26 −0.53 −0.36 +0.21

HINT [56] +5.95 +6.55 +5.27 +5.43 +9.54 +4.34 +2.55 −0.01 +1.24 +2.58

EGA [43] +35.35 +23.56 +27.09 +24.69 +28.94 +22.00 +10.12 +4.62 +3.80 +10.37

NCE [7] +21.51 +19.25 +20.39 +16.06 +19.70 +13.29 +6.78 +3.38 +1.06 +6.73

KL+EGA +35.74 +26.10 +23.23 +28.90 +29.59 +20.06 +8.62 +3.81 +1.81 +14.05

KL+NCE +31.35 +24.46 +20.12 +22.62 +27.14 +19.06 +8.48 +1.50 +2.36 +12.18

Alignment in the Embedding Space Can Further Improve Transfer-
ability. Recent advances in knowledge distillation highlight the benefits of
aligning intermediate representations over aligning outputs [7,43,51]. Motivated
by this, we investigate aligning the hidden representations of a Res50 source
model with a Res18 witness model. We set q in (1) to the layer before the
fully-connected layer and evaluate four embedding-space distillation methods:
Relational Knowledge Distillation (RKD) [51], Embedding Graph Alignment
(EGA) [43], Intermediate-level Hints (HINT) [56] and Noise Contrastive Esti-
mation (NCE) [7]. These methods correspond to different choices of distance
metric d in (1). Moreover, alignment can be performed in both output and em-
bedding spaces, requiring the optimization of a combined objective with a scaling
hyper-parameter (λ): dq(z

[q]
s (x), z

[q]
w (x)) + λdp(z

[p]
s (x), z

[p]
w (x)), where p < q = l.

In our experiment, we combine KL with EGA and NCE (λ = 1).
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Table 5: Compatibility of model alignment with different attack algorithms.
The Res50 and ViT-B/16 source models are aligned with a Res18 and ViT-T/16 witness
model, respectively. Each entry begins with the error rate for perturbations generated
by the original source model. Then, this is followed by the change in the error rate after
model alignment. The results demonstrate that the model alignment process enhances
the effectiveness of all attack algorithms.

Source Attack
Target

Res18 VGG19 DN121 IncV3 ViT-B/16 SWIN

Res50

MI [13] 75.54 + 20.23 71.46 + 19.97 79.60 + 16.31 59.08 + 22.22 25.19 + 7.87 37.04 + 16.02

NI [35] 59.71 + 21.99 56.30 + 19.14 59.56 + 19.90 46.45 + 15.59 26.66 + 3.62 28.62 + 8.41

VMI [63] 85.26 + 12.70 83.16 + 13.13 88.09 + 9.72 71.98 + 16.68 29.62 + 8.32 49.13 + 15.45

VNI [63] 86.92 + 11.18 85.64 + 11.36 90.47 + 8.21 73.60 + 16.40 29.15 + 8.58 46.64 + 16.75

SINI [35] 67.43 + 17.05 61.73 + 11.87 65.82 + 13.34 53.74 + 11.96 26.07 + 3.03 30.59 + 5.29

TI [14] 71.31 + 21.67 64.87 + 20.13 73.95 + 16.85 53.13 + 19.18 25.58 + 7.59 30.00 + 11.71

DI [73] 87.95 + 11.03 82.12 + 15.88 90.02 + 9.40 77.78 + 15.45 27.48 + 8.69 43.20 + 21.83

ViT-B/16

MI [13] 33.73 + 15.60 35.24 + 12.06 32.29 + 13.51 33.97 + 11.85 71.48 + 24.13 33.57 + 20.87

NI [35] 35.10 + 6.93 35.58 + 4.58 31.93 + 7.44 33.67 + 5.70 53.55 + 17.73 30.69 + 8.60

VMI [63] 35.59 + 18.65 37.82 + 14.72 34.55 + 16.12 34.42 + 15.15 77.20 + 19.14 37.63 + 21.75

VNI [63] 33.99 + 22.45 37.19 + 17.16 32.59 + 19.92 33.19 + 20.83 80.07 + 17.44 38.19 + 21.89

SINI [35] 36.68 + 11.40 36.56 + 7.49 33.12 + 9.63 35.87 + 9.70 62.07 + 9.97 33.02 + 10.26

TI [14] 36.85 + 29.96 32.74 + 24.05 35.48 + 25.98 32.99 + 21.31 67.16 + 27.23 32.50 + 25.52

DI [73] 41.75 + 30.79 39.03 + 30.42 41.40 + 26.69 38.62 + 30.51 84.10 + 13.70 42.09 + 29.79

Table 6: Improved transferability from using aligned models alone or in
an ensemble. Perturbations from the aligned model (Res50*) demonstrate higher
transferability compared to those from an ensemble of source and witness models.

Source
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN
Res18 87.53 67.411 52.074 58.85 67.12 50.22 31.88 24.65 19.16 30.91
Res50 66.97 85.02 72.14 64.88 75.89 49.56 32.14 25.23 22.58 28.96
Res50* 92.03 95.73 89.86 90.60 92.51 71.42 44.12 33.24 25.51 49.12

Res50 + Res18 [13] 91.25 91.56 80.60 75.90 85.36 60.11 19.01 15.95 10.90 27.10
2×Res50* [13] 98.70 99.44 98.32 96.09 98.71 84.65 38.98 25.71 15.42 57.30

2×(Res50 + Res18) [13] 97.69 98.73 96.81 92.95 98.32 78.61 23.87 18.06 12.25 41.77

The results are summarized in Tab. 4, where we also supplement the previous
KL-based results with total variation (TV). These results demonstrate improved
transferability with other alignment formulations, including both embedding-
space and output-embedding-space alignment. These promising findings pave
the way for further exploration of embedding-space model alignment to improve
adversarial transferability.

Model Alignment is Compatible with Other Transfer-enhancing Meth-
ods. To demonstrate that model alignment is compatible with a wide range of at-
tack algorithms, we extend our analysis to include additional transfer-enhancing
attacks. This includes optimization-based methods such as MI-FGSM [13], NI-
FGSM/SINI-FGSM [35] and VMI-FGSM/VNI-FGSM [63]. We also include data-
augmentation-based methods such as TI-FGSM [14] and DI-FGSM [73]. More-
over, we consider a larger ℓ∞-norm constraint of ϵ = 8/255 with a step size of
α = 2/255, and double the number of iterations to 40. The results are summa-
rized in Tab. 5. Each entry begins with the error rate for perturbations generated
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by the original source model. Then, this is followed by the change in the error
rate after model alignment. We observe that all considered attack algorithms
can leverage the aligned source model to improve transferability.

Model-modification attacks: In addition to the attacks included in the
table, we show that model alignment can be integrated with LinBP [21] and
BPA [72], two model-modification-based methods. We compare the transfer-
abilty of MI-FGSM-LinBP and PGD-BPA perturbations from the aligned Res50
to those from the original, unaligned Res50. We observe increased transferability
across all target models, with an average increase of 9.66% and 16.86%, respec-
tively. These results are included in Appendix D.3.

Ensemble attacks: Given that an additional witness model is involved in
the attack process, it is important to compare perturbations produced by an
aligned model with those generated by an ensemble of the original source and
witness model. In Tab. 6, we first demonstrate transferability using the original
Res18 and Res50, followed by a Res50 aligned with Res18 (Res50*). Next, we
incorporate the ensemble in logits scheme [13] into the PGD attack, and consider
three scenarios: an ensemble of the source and witness models (Res50+Res18),
an ensemble of two aligned models (2×Res50*), and an ensemble of two pairs of
source-witness models (2×(Res50+Res18)).

We make two observations. First, perturbations from a single aligned model
demonstrate higher transferability compared to those from an ensemble of source
and witness models, and an ensemble of two aligned models not only further im-
proves transferability but also surpasses the performance of the four-model en-
semble. Beyond the improved transferability, model alignment brings the added
benefits of faster inference times and lower memory requirements, presenting
a significant advantage over conventional ensemble approaches. Second, when
targeting ViTs, perturbations generated from ResNet ensembles exhibit limited
transferability. This observation is in line with the previous result [42], underscor-
ing the specific challenges in transferring attacks between different architectures.

5 Conclusions

In this paper, we proposed model alignment as a novel perspective in improving
the transferability of adversarial examples. During alignment, the parameters of
the source model are fine-tuned to minimize an alignment loss which measures
the divergence in the predictions between the source and the witness model. We
conduct a geometric analysis to study the changes in the loss landscape resulting
from this process to better understand the underlying effect of model alignment.
Extensive experiments on the ImageNet dataset demonstrate that perturbations
generated from aligned source models exhibit significantly higher transferability
than those from the original source model. A limitation of our study is the
absence of a theoretical framework to understand the model alignment process,
and we consider it as future work.
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A Summary of the Supplementary Material

The supplementary material is organized as follows. In Appendix B, we first
describe the implementation details, including the exact optimization schedule,
model architectures, data augmentations, attack algorithms, and methods for
alignment in the embedding space. In Appendix C, we discuss additional empir-
ical studies on understanding the model alignment process. Finally, additional
experiment results and discussions are included in Appendix D.

B Implementation Details

For all models considered in our paper, we adhere to the optimization configu-
rations as detailed in the official PyTorch repository4.
CNN-based models: All CNN-based models are trained using the same config-
urations. Those models include ResNet18 (Res18), ResNet50 (Res50), ResNet101
(Res101), VGG19, DenseNet121 (DN121), and Inception-v3 (IncV3). They are
trained for 90 epochs using SGD with an initial learning rate of 0.1 and a momen-
tum coefficient of 0.9. We start training with a 5-epoch learning rate warmup,
followed by a cosine decay schedule. The batch size is set at 256.
ViT-based models: The ViT-based models include ViT-T/16, ViT-S/16, ViT-
B/16, and Swin Transformers (SWIN). They are all trained for 300 epochs using
AdamW. The initial learning rates are set at 0.003 for ViT models and 0.001
for SWIN. For the ViT’s, training begins with a 30-epoch learning rate warmup,
followed by a cosine decay schedule, whereas for SWIN, the warmup is 20 epochs.
The batch size is set at 1024. We use label smoothing during training. To ensure
training stability, the global gradient norm is clipped at 1.
Data augmentations: For the training of all CNN-based models, augmentation
techniques are random resizing, cropping, and flipping. For the training of all
ViT-based models, we further incorporate Mixup [80] and Cutmix [78]. Only
random resizing, cropping and flipping are used during the alignment process.
Specifically, RandAugment [11] is applied to ViT’s, while TrivialAugment [48]
and random erasing [85] are applied to SWIN.
Model definitions: All model definitions are obtained from the torchvision
library [46], with the exceptions of IncV3, ViT’s, and SWIN, which are obtained
from the timm library [66].
Attack algorithms: All the attack algorithms used in our paper are provided
by the Torchattacks library [29].
Alignment in the embedding space: When using a witness model with a
different architecture than the source model, the dimensions of their hidden rep-
resentations are likely to be different, i.e., dim(z

[qs]
s (x)) ̸= dim(z

[qw]
w (x)), where

qs and qw represent the layers just before the fully-connected layer in their
respective models. To address this dimensional mismatch, we follow previous
work [7, 43, 51, 56] and apply a linear projection to zs so its dimension matches

4 https://github.com/pytorch/vision/tree/main/references/classification

https://github.com/pytorch/vision/tree/main/references/classification
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Table 7: Comparing the similarity between the source and witness model.
We focus on aligning a Res50 with a Res18 and a ViT-B/16 with a ViT-T/16. We
first evaluate the similarity between each original source model and its corresponding
witness model. This is then followed by an evaluation between the aligned model and
the witness model.

Source/Witness
KL Prediction Agreement Input Gradient Cosine Similarity

Before After Before After Before After
Res50 / Res18 0.63 0.31 80.7% 82.4% 0.043 0.096
ViT-B / ViT-T 0.75 0.24 78.9% 85.0% 0.026 0.063

Table 8: Comparing the largest eigenvalue of the input Hessian on the
original source model and the aligned source model. Results are averaged over
1000 randomly selected data points from the ImageNet test set. The largest eigenvalue
decreases significantly when evaluated on all three types of inputs.

Data Res50
Original Aligned

Clean 4.16 1.25
Gaussian-perturbed 4.34 1.27

PGD-perturbed 0.10 0.05

that of zw. The weights of the linear projection are treated as trainable param-
eters during the alignment process.

C Understanding Model Alignment

C.1 Evaluating Similarity Between the Source and Witness Model

To study the similarity between the source and witness models before and after
alignment, we examine KL divergence, prediction agreement, and cosine similar-
ity of input gradients. The latter is especially important for its role in the attack
processes. Our investigation involves aligning a Res50 with a Res18 and a ViT-
B/16 with a ViT-T/16. We first evaluate the similarity between each original
source model and its corresponding witness model. This is then followed by an
evaluation between the aligned model and the witness model. Tab. 7 presents
the results, indicating reductions in KL divergence, increased cosine similarity,
and improved prediction agreement post-alignment.

C.2 Smoothness Analysis Using the Largest Eigenvalue of the
Input Hessian

In Sec. 3.3, we study the effect of model alignment from a geometric perspective.
Our analysis demonstrates a smoothing effect on the loss surface due to model
alignment, as shown by the significant decrease in gradient norm.
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Table 9: Aligning the Res50 source model with multiple Res18 as witness
models. Using an increasing number of Res18 witness models during the alignment
process results in a modest improvement in transferability for adversarial examples
generated from the aligned Res50. This result suggests that simply quadrupling the
number of witness models, without considering their diversity, does not lead to a pro-
portional improvement in transferability.

# Witness
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN

n/a 44.52 61.51 53.01 43.47 50.59 36.05 25.58 21.54 18.86 22.65

1 +35.30 +26.56 +25.20 +24.38 +27.86 +19.18 +5.49 +2.85 +1.61 +9.60

2 +35.01 +27.83 +24.82 +24.50 +27.88 +19.31 +8.28 +3.82 +1.19 +10.67

3 +34.69 +27.69 +27.39 +24.37 +29.44 +21.51 +8.19 +4.49 +3.27 +11.74

4 +35.57 +27.63 +27.94 +25.12 +28.61 +21.81 +8.29 +5.00 +3.78 +12.15

Another metric for evaluating the smoothness of the loss landscape is the
largest eigenvalue of the input Hessian [83]. This analysis, based on a second-
order Taylor expansion of the loss function, assumes that the local curvature of
loss with respect to the input can be well represented by the eigenspectrum of the
Hessian matrix. Concretely, we measure λmax(H) where H = ∇2

xℓ(x+∆x, y, θ),
for ∆x ∈ {0,Gaussian,PGD} and for θ ∈ {θs, θa} over 1000 randomly sampled
images from the ImageNet test set.

The results are summarized in Tab. 8. We only incude results for Res50, as
PyTorch currently does not support computing second-order derivatives for ViT
models. In line with the result presented in Sec. 3.3, the decrease in the largest
eigenvalue for all inputs demonstrates a smoothing effect on the loss surface due
to the alignment process.

D Additional Experiment

D.1 More Witness Models, Higher Transferability

Evaluations in Sec. 4 focus on alignment using a single witness model. However,
aligning the source model with multiple witness models can encourage learning
features extracted by a group of witness models, potentially increasing transfer-
ability even further. This approach also serves as an effective strategy to prevent
overfitting to a single witness model. Tab. 9 demonstrates the results of using
an increasing number of Res18 models to align with Res50. While we do observe
that a greater number of witness models tends to result in more transferable
perturbations, the improvement is modest, indicating that simply increasing the
number of witnesses without considering their diversity does not proportionally
enhance transferability.

D.2 Witness Model Diversity Matters

Though having more witnesses can prevent overfitting, model diversity is crucial.
For example, in Tab. 10, we compare aligning a Res50 with a single Res50 to
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Table 10: Aligning Res50 using witness models with different architectures.
When combining multiple models of different architectures as witness models, we ob-
serve improvements for some target models.

Witness
Target

Res18 Res50 VGG19 DN121 IncV3 ViT-S SWIN
Res50 54.13 71.41 50.06 59.56 40.84 22.19 25.30

Res50+IncV3+ViT-S 51.21 66.25 48.65 59.82 44.17 23.86 25.55

Table 11: Model alignment can be integrated with model modification-based
methods. Using a Res50 as the target model, we compare the transferabilty of MI-
FGSM-LinBP and PGD-BPA perturbations from the aligned Res50 to those from the
original, unaligned Res50. We observe increased transferability across all target models.

Attack Source
Target

Res18 Res50 VGG19 DN121 IncV3 ViT-T SWIN

MI-FGSM-LinBP
Res50 87.89 93.55 84.08 88.57 71.19 43.16 46.19
Res50* 97.27 96.27 93.07 95.61 86.04 56.25 57.71

PGD-BPA
Res50 51.06 63.98 51.54 58.24 34.02 12.0 11.04
Res50* 76.76 81.98 70.62 77.98 53.18 19.3 20.06

aligning it with a Res50, ViT-S, and IncV3. The results show that aligning with
models of different architectures improves transferability to some targets while
slightly decreasing it for others. Results in Tab. 9 and 10 suggest that a strategy
for selecting the optimal number and type of witness models is an interesting
direction for future research.

D.3 Comparison with Model Modification-based Methods

A key advantage of our approach over model modification-based methods is its
model-agnostic nature: alignment can be applied to any model without changing
its forward or backward pass. In contrast, other methods require changes, such
as those seen in LinBP and BPA, or even complete retraining from scratch. Ad-
ditionally, our technique can be integrated with these model modification-based
methods. In Tab. 11, we observe the transferability improvement of MI-FGSM-
LinBP and PGD-BPA generated using the aligned Res50 across all considered
target models.

Note that the evaluation data selection strategy in Tab. 11 differs slightly
from that in Sec. 4, where perturbations are generated from both the source and
target models, and transferability evaluations are based on those misclassified by
their originating models. Our evaluation considers a wide range of target model
architectures. However, since the attack algorithms are only avaiable for limited
architectures, making it difficult to generate perturbations from some target
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Table 12: Improved transferability on Res50 with defense methods. Although
the defense methods can generally reduce transferability, using the aligned model still
results in a significant improvement in transferability compared to the original model.

Source
Defense

n/a AT [67] Bit-Red [75] JPEG [20] FD [38] RS [9] NRP [49]
Res50 61.51 48.06 49.22 38.81 43.77 35.41 33.01
Res50* 88.07 52.15 54.70 53.03 50.59 43.99 41.19

Table 13: Generalizability of model alignment on other datasets. We con-
sider two additional datasets: Stanford Cars and Food101. On Stanford Cars, SWIN
is aligned using Res50. On Food101, Res50 is aligned using ConvNeXt-B. The aligned
source model is denoted with *. We demonstrate that improved transferability can also
be observed on other datasets.

Dataset Source
Target

ConvNeXt-B ViT-B

Stanford Cars
SWIN 68.77 17.6
SWIN* 88.89 50.67

Dataset Source
Target

SWIN ViT-B

Food101
Res50 26.67 12.36
Res50* 31.88 16.16

models. As such, results for MI-FGSM-LinBP and PGD-BPA are evalated on
1000 randomly selected inputs and are not included in Tab. 5 with other attacks.

D.4 Improved Transferability on Defended Models

To demonstrate the improved transferability on defended models, we evaluate
using a normally trained Res50 with five defense mechanisms, including Bit-
Red [75], JPEG [20], FD [38], RS [9], NRP [49]. We adhere to the exact con-
figuration of the defense methods as described in the previous work [63]. We
also consider an adversarially trained Res50 (AT) [67]. Results in Tab. 12 show
that although the defense methods can generally reduce transferability, using
the aligned model still results in a significant improvement in transferability
compared to the original source model.

D.5 Experiments on Additional Datasets

Evaluations in Sec. 4 focuses on the ImageNet dataset. Here, we supplement
our results with experiments on Stanford Cars [30] and Food101 [3]. On Stan-
ford Cars, SWIN is aligned using Res50. On Food101, Res50 is aligned using
ConvNeXt-B. Results in Tab. 13 show that the improved transferability achieved
through model alignment is also evident on other datasets.
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Table 14: Improving transferability via embedding space alignment. We focus
on ViT-B/16 as the source model and ViT-T/16 as the witness model.

Method
Target

Res18 Res50 Res101 VGG19 DN121 IncV3 ViT-T/16 ViT-S/16 ViT-B/16 SWIN
n/a 23.05 19.67 18.30 21.83 21.96 21.52 36.44 44.58 51.27 21.22

KL +10.13 +9.71 +8.42 +10.71 +11.30 +9.89 +51.72 +44.99 +34.69 +20.01

KD [51] +13.40 +8.47 +8.79 +11.54 +10.25 +11.37 +46.07 +43.41 +34.02 +17.51

EGA [43] +12.55 +10.21 +9.21 +11.39 +9.30 +12.05 +53.08 +44.65 +33.50 +21.40

HINT [56] +12.78 +10.02 +9.84 +12.21 +12.07 +12.31 +53.41 +47.05 +38.50 +25.51

NCE [7] +8.90 +8.48 +7.16 +9.00 +7.26 +7.92 +45.09 +41.84 +32.57 +15.47

D.6 Embedding-space Alignment on Vision Transformers

The ablation study in Sec. 4 shows that Res50 generates more transferable per-
turbations when aligned with Res18 in the embedding space. Results in Tab. 14
show that ViT can also benefit from embedding-space alignment.


	Improving Adversarial Transferability via Model Alignment

