
Published as a conference paper at ICLR 2022

LEARNING OBJECT-ORIENTED DYNAMICS FOR PLAN-
NING FROM TEXT

Guiliang Liu1,3, Ashutosh Adhikari1,4 , Amir-massoud Farahmand2,3, Pascal Poupart1,3
1University of Waterloo, 2University of Toronto, 3Vector Institute, 4Microsoft
g233liu@uwaterloo.ca, aadhikari@microsoft.com,
farahmand@vectorinstitute.ai,ppoupart@uwaterloo.ca

ABSTRACT

The advancement of dynamics models enables model-based planning in complex
environments. Dynamics models mostly study image-based games with fully
observable states. Generalizing these models to Text-Based Games (TBGs), which
often include partially observable states with noisy text observations, is challenging.
In this work, we propose an Object-Oriented Text Dynamics (OOTD) model that
enables planning algorithms to solve decision-making problems in text domains.
OOTD predicts a memory graph that dynamically remembers the history of object
observations and filters object-irrelevant information. To improve the robustness of
dynamics, our OOTD model identifies the objects influenced by input actions and
predicts beliefs of object states with independently parameterized transition layers.
We develop variational objectives under the object-supervised and self-supervised
settings to model the stochasticity of predicted dynamics. Empirical results show
that our OOTD-based planner significantly outperforms model-free baselines in
terms of sample efficiency and running scores.

1 INTRODUCTION

Planning algorithms typically leverage the environment dynamics to solve decision-making prob-
lems (Sutton & Barto, 2018). To plan in unknown environments, the agent must learn a dynamics
model to predict future (belief) states and rewards by conditioning on an action. This dynamics
model enables the implementation of intensive search for optimal actions, which can potentially
increase both sample efficiency and cumulative rewards, compared to model-free methods (Hafner
et al., 2019; Wang et al., 2019; Kaiser et al., 2020). Despite the promising performance, learning
a dynamics model that can accurately generalize at test time is still challenging, especially when
handling a high-dimensional state space for low-level features, e.g., pixels and text.

To facilitate dynamics learning in complex environments, Diuk et al. (2008) proposed an Object-
Oriented Markov Decision Process (OO-MDP) that factorizes world states into object states. They
showed that the agent can find optimal policies with a better sample efficiency by modeling the
dynamics at the object level. Some following works (Finn et al., 2016; Goel et al., 2018; Zhu
et al., 2018; 2020) extended OO-MDPs to image-based games. These methods typically assume full
observability over game states and a fixed input size, which facilitates the use of object masks to
decompose an image into different objects. On the other hand, in Text-Based Games (TBGs), the text
observation, whose length runs from a few words to an entire paragraph, is a partial description of
the current game state, and thus each observation provides information about a limited number of
objects (in fact, only an average of 4.51% of the candidate objects are mentioned in an observation
from Textworld (Côté et al., 2018)). The dynamics model must remember the history of observed
objects to predict accurately their states. Moreover, an observation typically contains lots of noisy
patterns that record object-irrelevant information (e.g., the non-bolded text from ot in Figure 1).
While previous works (Ammanabrolu & Riedl, 2019; Ammanabrolu & Hausknecht, 2020) designed
rule-based heuristics to extract useful information, we expect that dynamically capturing object
information from noisy observations helps to generalize to more environments.

In this work, we design an Object-Oriented Text Dynamics (OOTD) model that integrates:

1) Graph Representation for Objects. OOTD predicts a memory graph from the input states. The
memory graph, whose nodes correspond to the objects to be modelled, captures the information about
these objects from the beginning of a game. By applying this graph as an information bottleneck for

1

Published as a conference paper at ICLR 2022

dynamics prediction, OOTD filters the object-irrelevant information in the text inputs, which forms a
tighter information plane and facilitates generalization to unseen games (Tishby & Zaslavsky, 2015).

2) Independent Transition Layers. Intuitively, an input action influences the states of a limited
number of objects, for example, when the agent performs "take the carrot from the counter", only
the states of "carrot" and "counter" should be updated. To capture which objects are influenced
and keep others invariant to this update, OOTD learns an action-aware representation for each
object with bi-directional attention and predicts the belief states of objects with independently
parameterized transition layers. This independent mechanism enhances the robustness for dynamics
prediction (Goyal et al., 2019) (also see the ablation study in Section 4.2).

During planning, we predict belief states without knowing rewards and observations. To learn a
stochastic dynamics model, we propose object-supervised and self-supervised Evidence Lower Bound
(ELBo) objectives for training our OOTD model. We evaluate how well the OOTD model supports
planning by implementing planning algorithms (e.g., Dyna-Q (Kuvayev & Sutton, 1996) and Monte
Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006)) based on learned dynamics. Empirical
results show that these planning algorithms significantly outperform other baselines in terms of
game performance and sample efficiency. To support the design of our OOTD model, we include an
ablation study that visualizes the object states and quantifies the dynamics prediction performance.

Contributions: 1) We introduce our approach to implementing model-based planning algorithms for
solving decision-making problems in the text-domain. 2) We propose the OOTD model that learns to
predict beliefs about object dynamics.

𝑎"𝑜"𝑒𝑛𝑣𝑎"'(𝑜")(

𝒛+,"'(

𝑔"

Welcome to the TextWorld. You open the copy of “cooking: a modern approach (3rd
ed.)” and start reading: recipe # 1 --------- gather all following ingredients and follow
the directions to prepare this tasty meal. ingredients: banana, block of cheese,
carrot directions: dice the banana, fry the banana, chop the block of cheese,
roast the block of cheese, slice the carrot, fry the carrot, and prepare meal.

Take banana from counter

𝑒𝑛𝑣

Encode 𝑜" and 𝑎"'(
With {𝑞/(, 𝑞/+, 𝑞/0}

Plan with Transition (𝑝𝒯(, 𝑝𝒯+ , 𝑝𝒯0)
and reward (𝑝3) Models

Controlling in TBG

Planning in object space

Examine cookbook

𝒛(,"'(

𝒛0,"'(

Planner

𝒛+,"
𝒛(,"

𝒛0,"

𝒛+,")(
𝒛(,")(

𝒛0,")(

You take the banana from the counter.

carrot
cheese

banana

Figure 1: An example of planning from text. We show three objects (cheese, carrot and banana) in
this example. When interacting with the environment (env), the agent encodes the information of
observation ot into object states zt with encoders (q1

E , q2
E , q3
E). Given a goal gt, the planner determines

the action at by searching with the reward (pr) and transition models (p1
T , p2

T p
3
T).

2 OBJECT LEVEL PLANNING IN TEXT DOMAINS

In this work, the object-level dynamics are learned and evaluated in Text-Based Games (TBGs), for
which we extend OO-MDPs (Diuk et al., 2008) to capture partial observability. We define a graph
representation to remember object information and introduce the corresponding planning algorithms.

2.1 TEXT-BASED GAMES

Text-Based Games (TBGs) are complex, interactive simulations where an agent explores and plays a
game by processing text observations and responding with text commands. To study the generalization
ability of this policy, many recent works (Yin & May, 2019; Hausknecht et al., 2019; Ecoffet et al.,
2019; Adolphs & Hofmann, 2020; Adhikari et al., 2020) proposed to learn a policy by training with
a set of games and evaluating with games from a hold-out test set. The distributions of rewards
over state-action pairs are different in training and testing games because TBGs assign rewards
by conditioning on specific goals (that are predefined, but unknown). In this setting, TBGs have
different intermediate goals in each game, but they commonly share the same ultimate goals, and the
underlying causal dependencies leading to this ultimate goal are consistent. For example, to solve the
‘First Text-World Problems’ (Côté et al., 2018), an agent should always gather and process cooking
ingredients (e.g., "fry the potato") according to a recipe that it discovers in the game, although the
names and locations of the ingredients are different across different games. This property enables the
generalization of knowledge learned from training games to solve testing games.

2

Published as a conference paper at ICLR 2022

2.2 OBJECT-ORIENTED PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Since an observation reveals only partial information about the game state, we formulate TBGs as
partially observable Markov decision processes (POMDPs). In this work, we extend the POMDP
framework to represent object-level dynamics (Diuk et al., 2008). The Object-Oriented (OO) POMDP
is a tuple 〈S,O,Z,Φ,G,A,R, T , γ〉, where:

• S andO define the spaces of low-level states and observations from the TGB environments while Z
and Φ are the spaces of object-level states and observations. In a TBG, o ∈ O is a text message from
the game environment (e.g., "Please fry the potato."), whereas φ ∈ Φ records the specific objects
and their relations in this message (e.g., a triplet like "potato-need-fry")). To model the object
dynamics, the agent must extract φ from o by distilling objects’ information from text sentences. In
this work, we model object states z ∈ Z (instead of s ∈ S) and learn latent representations for z.

• G and A are the spaces for goals and actions. We study choice-based games (Yin & May, 2019),
where candidate actions At ∈ A are available at time step t. We include a goal variable g to mark
different tasks in each game. Following the Universal MDP (UMDP) (Schaul et al., 2015), the
agent initializes a goal at the beginning of a game and updates it when the task is finished.

• R and T define the spaces of reward and transition models. γ is a discount factor. We assume the
real dynamics models (p∗T and p∗r) are unknown, so we learn the object-oriented transition model
and the reward model, i.e., ∀k ∈ {1, . . . ,K}, pkT (zk,t|zt−1, at−1) ∈ T and pr(rt|zt−1, gt) ∈ R.

In our OO-POMDP, transitions pT , observations φ, and states z are modelled for each object, whereas
actions a and rewards r are defined for the entire environment. This generalizes to popular RL
environments that accept an action and return a reward at every time step. Unlike (Wandzel et al.,
2019) that represented object states with symbolic attributes, we develop a latent object representation
that can generalize to the complex environment with high-dimensional inputs (e.g., text).

2.3 GRAPH REPRESENTATION FOR OBJECTS

We utilize an object-relation-object triplet φ to represent object information. At time step t, φt =
[φt,1, ..., φt,M] (M is the number of observed triplets at t). Given a total of K candidate objects and
C candidate relations, these triplets can be mapped to a knowledge graph Ωt ∈ {0, 1}C×K×K . Each
entry (c, i, j) ∈ {0, 1} indicates whether there is a relationship r between the ith and jth objects.
This knowledge graph forms a natural representation of object relations since object information in
most observations ot corresponds to either entity attributes (e.g., "potato-is-fried") or to relational
information about entities (e.g., "potato-on-counter" and "bedroom-north_of-kitchen"), which can be
conveniently represented by triplets and the corresponding graph.

Memory Graph. We store the observations up to time step t in a memory graph ht = Ω0 ⊕ Ω1 ⊕
· · · ⊕ Ωt that captures object information observed by the agent since the beginning of a game.
Similar to previous works Adhikari et al. (2020); Ammanabrolu & Riedl (2019); Ammanabrolu &
Hausknecht (2020), we summarize the object-level history with a latent memory graph ht. To update
the memory from t − 1 to t, we learn a graph updater ⊕, and ht = ht−1 ⊕ Ωt. During updating,
⊕ needs to resolve some semantically contradictory triplets, for example "player-at-kitchen" and
"player-at-bedroom" (because the player cannot simultaneously be in two different locations). Our
OOTD model is trained to automatically emulate such an operator. Our transition model (Section 3.1)
is trained to generate ht from zt, allowing the latent object states to capture object relations.

2.4 MODEL-BASED PLANNING IN TEXT-BASED GAMES

Table 1: Object dynamics for planning, where the transi-
tion models and observation encoders are independently
parameterized for a total of K objects.

Transition models
[
pkT (zk,t+1|at, zt)

]K
k=1

Observation encoders
[
qkE(zk,t+1|ot+1, at, zt)

]K
k=1

Reward model pr(rt|zt, gt)
Graph & Obs. decoder pΩ(ht|zt), po(ot|zt)

We introduce model-based planning in
TBGs. Based on the OO-POMDP (Sec-
tion 2.2), at each time step t, we define
latent states zt = [z1,t, . . . , zK,t] for a
total of K objects, text observations ot,
action commands at, and scalar rewards
rt, that follow the stochastic dynamics in
Table 1. The details of these dynamics
models are introduced in Section 3.

3

Published as a conference paper at ICLR 2022

Based on these dynamics, we implement planning algorithms to select an action from candidate
commands At for maximizing the expected sum of rewards Eπ(

∑T
t=0 γ

trt), as shown in Figure 1.
In this work, we study choice-based games (Yin & May, 2019), where the candidate commands
(or actions) At are available and the planner determines the action at ∈ At to be performed. The
planning algorithms include Dyna-Q, Monte-Carlo Tree Search (MCTS) and their combinations:

Dyna-Q (Kuvayev & Sutton, 1996) incorporates dynamics models and Q-learning. Dyna-Q inter-
actively 1) updates the dynamics model with observed transitions and 2) trains the Q network to
minimize the Temporal Difference (TD) loss (Equation 1) based on both observed transitions from the
environment and predicted transitions from the dynamics models. Compared to the model-free Deep
Q-Network (DQN), Dyna-Q is more sample efficient: by expanding the replay buffer with dynamics
models, Dyna-Q converges faster with the same number of interactions from the environment.

LTD = E
[(
rt + γ max

a∈At

Q(zt, a, gt)−Q(zt−1, at−1, gt−1)
)2]

(1)

MCTS (Kocsis & Szepesvári, 2006) is a heuristic search algorithm that builds and updates a search
tree based on environment dynamics. By performing Monte-Carlo simulations organized in a tree
structure, MCTS does an efficient search in environments with large action spaces (Silver et al., 2018).
MCTS iteratively runs multiple playouts. At the ith playout, we implement 1) Selection: Traverse
the tree from the root node to a leaf node (corresponding to object state zτ) by selecting the action
command ai,t to maximize the Upper Confidence Bound (UCB) (Couëtoux et al., 2011):

ai,t = arg max
a∈At

[
Qi(zt, a, g) + cpuct

√
log(i− 1)

ζi−1(zt, a, g) + 1

]
(2)

where cpuct controls the scale of exploration, and ζi records the visit count at the ith play. 2)
Evaluation: Evaluate the selected leaf zτ with the reward model pr(rτ |zτ , gt). 3) Expansion: Expand
the leaf node by adding child nodes. 4) Back Up: Update the action-values: Qi = (Qi−1ζi−1 +
rτ)/(ζi−1 + 1) and increment the visit count: ζi = ζi−1 + 1 on all the traversed edges.

Dyna-Q + MCTS initializes Q values in MCTS by utilizing the Dyna-Q network. This combination
enables MCTS to perform the tree search with more efficiency and efficacy (Silver et al., 2016).

3 OBJECT-ORIENTED DYNAMICS MODELS

We introduce the Object-Oriented Text Dynamics (OOTD) models, including 1) a transition model
that directly predicts the belief states of objects and 2) a reward model that maps sampled object
states to rewards. Based on these models, the planner determines an action purely based on predicted
beliefs and calibrates its belief with the feedback (observations and rewards) from the environment.
We introduce the object-supervised and self-supervised objectives to train these models.

RGCN
Graph
Encoder

BIDAF
Network𝒂"#$

𝒉"#$

MLP

MLP

MLP

𝒆$

𝒆'

𝒆(

……

……
ComplEx
Graph
Decoder

𝒛$,"#$

𝒛',"#$

𝒛(,"#$

……

……

𝒩 𝝁$,"
- , 𝝈$,"

- 	~		𝒛$,"

𝒩 𝝁',"
- , 𝝈',"

- 	~		𝒛',"

𝒩 𝝁(,"
- , 𝝈(,"

- 	~		𝒛(,"

Mean
Pooling 𝑟"

𝒈"
Object-Oriented Transition Function

Attentions
𝑩"45

Reward Function

Figure 2: Left: The Object-Oriented Transition Model. Right: The Reward Model.

3.1 OBJECT ORIENTED TRANSITION MODEL

Figure 2 illustrates our transition model, which has three major components (a) a graph decoder, (b)
a graph encoder, and (c) independent transition layers.

(a) Graph Decoder. Given the states of K objects zt−1 = [z1,t−1, ..., zK,t−1], we implement a
graph decoder with the ComplEx scoring function (Trouillon et al., 2016) that maps the object states
to a memory graph ht−1 ∈ [0, 1]C×K×K . The scoring function for an entry (c, i, j) (in the adjacency
matrix of ht−1) is implemented by Re(〈ωc, zi,t−1, zj,t−1〉) where ωc ∈ CE is a complex vector for

4

Published as a conference paper at ICLR 2022

the relation c and Re denotes the real part of the decomposition in complex space. The function
can model a large variety of binary relations, including both symmetric and antisymmetric relations.
Based on this scoring function, predicting ht−1 is equivalent to estimating the probability of having a
relation c between object i and j, which can be efficiently approximated with a low-ranked (E � K)
matrix decomposition: ht = [Re(ZW1Z

T), ..., Re(ZWCZ
T)] where Z ∈ RK×E is the matrix of

object states andWc ∈ CE×E is a complex matrix. In practice, this decomposition enables to map
efficiently from zt−1 to ht−1, therefore scaling our method to environments with numerous objects.

(b) Graph Encoder. We encode the memory graph ht−1 into node representations et−1 =
[e1,t−1, ..., eK,t−1] with a Relational Graph Convolution Network (R-GCN) (Schlichtkrull et al.,
2018). Nodes in ht correspond to candidate objects and RGCN performs message passing between
nodes, so ek,t−1 captures the semantic information of the kth object and its relations to other nodes
(objects). Compared to zt−1, et−1 denotes the object embeddings after taking into account relations
to other objects in the graph. The graph can be thought as a succinct latent representation that ignores
irrelevant object information in text observations when predicting the next state zt.

(c) Independent Transition Layers. TBG environments typically contain a large population of
objects, and each action can only affect a few underlying objects. In order to improve the robustness
of the dynamics, we utilize 1) a Bi-Directional Attention Flow (BIDAF) network (Seo et al., 2017) to
identify the affected objects and 2) a group of transition layers to predict the belief state of objects by
following the Independent Causal Mechanism (ICM) framework (Pearl, 2009).

Given et−1 and an action at−1 = [a1,t−1, ..., aJ,t−1] (a sentence of J words), the BIDAF network
learns an attention matrixBae ∈ [0, 1]K×J , where bk,j measures the similarity between the represen-
tation of the k-th object and the embedding of the j-th word. To learn an action-aware representation
of object, we compute 1) action-to-object attentions be that indicate which object representations
have the closest similarity to one of the action words and are hence critical for modelling the impact of
the action words; 2) object-to-action attentions bak that indicate which action words are most relevant
to the kth object representation. The action-aware object representation concatenates the attended
action vector νak,t−1, the attended object representation νet−1 and the initial object representation
ek,t−1: νak,t−1 =

∑
j
bak,jψ

a(aj,t−1) where bak = softmax(Bae
k,:) ∈ [0, 1]J ,

νet−1 =
∑

k
bekek,t−1 where be = softmax(maxcol(B

ae)) ∈ [0, 1]K ,

pkT (zk,t|at−1, zt−1) = N (µk,t,σk,t) where [µk,t,σk,t] = ψpk([νak,t−1,ν
e
t−1, ek,t−1]) (3)

Here ψa is a transformer-based text embedding function (Vaswani et al., 2017) for the input action,
and ψpk is implemented by a MLP. The transition layers ψp1 , . . . , ψ

p
K are parameterized independently.

3.2 OBJECT ORIENTED REWARD MODEL

We learn a reward model pr(rt|zt, gt) based on the predicted belief states. This reward model is
important for learning goal-conditioned policies that can utilize the knowledge learned from a task to
solve similar tasks, which accelerates learning and facilitates knowledge generalization.

To implement the reward model, we build a goal extractor (Appendix A.3) that extracts goals gt from
object states zt = [z1,t, . . . , zK,t]. The goal is described by a sequence of words and symbols that
follow the triplet format, e.g., "[potato, -, need, -, fry]" where "-" serves as separator between object
and relation mentions. Although zt implicitly embeds gt with latent values, we prefer to represent gt
explicitly with a sentence for the ease of model comprehension. Given the goal gt and object states
zt, the reward model pr is defined by

pr(rt|zt, gt) = ψr[zpoolt , ψg(gt)] where zpoolt = mean_pooling[z1,t, . . . , zK,t], (4)

ψg is a transformer-based text embedding function for goals, and ψr is implemented by a MLP.

3.3 TRAINING OBJECTIVE FOR DYNAMICS MODELS

In this section, we introduce the objectives for learning the transition model and the reward model
under the object-supervised setting and the self-supervised setting.

Object-Supervised Setting. We learn the dynamics model under the supervision of memory graphs
ht that record rich information about the observed objects and their relations from the beginning of a

5

Published as a conference paper at ICLR 2022

game (Section 2.3). The Object-Supervised Evidence Lower Bound (OS-ELBo) objective is:
T∑
t=1

{
EqE
[

log pΩ(ĥt|zt)
]
−

K∑
k=1

Dkl

[
qkE(zk,t|ot, at−1, zt−1)‖pkT (zk,t|at−1, zt−1)

]}
(5)

where pΩ is the graph decoder, pT is the transition model and qkE is the observation encoder. We
now provide more details about each component and how to obtain ht. pΩ is approximated by a
re-sampling technique described in Appendix A.2. pT is a Gaussian distribution as described in
Equation 3. qkE shares a similar structure to pT (see Appendix A.5 for more details).

The memory graph ht is not a direct output from the RL environment. To perform object-supervised
training, we extract object information from ot and predict ĥt with a deterministic object extractor
fe(ot, at−1, ht−1). We learn fe during a pre-training stage by utilizing a FTWP dataset. The dataset
records the trajectories [o1, a1, . . . , ot, at] and corresponding [h1, . . . , ht] by following walkthroughs
in FTWP games. In practice, we can build such a dataset by extracting triplets (φ) from the text
observations (o1, . . . , ot) with an Open Information Extractor (OIE) (Angeli et al., 2015) and map the
captured triplets into a knowledge graph by following (Ammanabrolu & Hausknecht, 2020). After
training fe, we initialize h0 = {0}C×K×K and update by ĥt = fe(ot, at−1, ĥt−1) during training.
The detailed introduction of fe and the FTWP dataset can be found in Appendix A.4 and A.6.

To train the reward model, we sample object states zt = [z1,t, . . . , zK,t] from their belief states,
extract goal gt, and minimize a smooth L1 loss (Girshick, 2015):{

1
2β [pr(rt|zt, gt)− rt]2, if |pr(rt|zt, gt)− rt| < β,

|pr(rt|zt, gt)− rt| − 1
2β, otherwise.

(6)

Self-Supervised Setting. In order to generalize our dynamics model to common RL environments
where the predicted or ground truth memory graphs are unavailable, we develop a Self-Supervised
Evidence Lower Bound (SS-ELBo) objective that directly learns from rewards and observations:

(7)T∑
t=1

{
EqE
[

log po(ot|zt) + log pr(rt|zt, gt)
]
−

K∑
k=1

Dkl

[
qE(zk,t|ot, at−1, zt−1)‖pT (zk,t|at−1, zt−1)

]}
where pT , pr and qE are the aforementioned transition model, reward model and observation encoder.
The observation decoder po is implemented by a Sequence-to-Sequence (Seq2Seq) model (Sutskever
et al., 2014), which is trained by a teacher-forcing technique with text observations ot. This SS-EBLo
objective enables training the reward and transition model together by maximizing one objective,
which improves the training efficiency. Appendix C.1 shows an example of a predicted graph.

4 EXPERIMENTS

Environments. We divide the games in the Text-World benchmark (Côté et al., 2018) into five
subsets according to their difficulty levels. Each subset contains 100 training, 20 validation, and
20 testing games. These subsets are mutually exclusive. For the easier cooking games, the recipe
requires a single ingredient and the world is limited to a single location, whereas harder games require
an agent to navigate a map of multiple locations to collect and appropriately process up to three
ingredients. Table 4 summarizes the game statistics.

Running Settings. To efficiently collect samples from the games in the training dataset, we train
our OOTD model by implementing the Dyna-Q algorithm (Algorithm 1 in Appendix) due to the
fact that 1) Q-network supports batch input, which enables solving and gathering data from multiple
games in parallel, and 2) the Q-based algorithms provide a fair comparison of sample efficiency
with other model-free baselines. After training, we fix the parameters in dynamics models and
predict belief states and rewards to solve the games in the test dataset. During testing, we study the
options of applying different planning algorithms including Dyna-Q, MCTS, and their combination
(Dyna-Q+MCTS) that initializes MCTS with values from Q networks (Algorithm 2 in appendix).
The model hyper-parameters are tuned with the games in the validation set. (Appendix A.1).

Baselines. we compare the state-of-the-art models for solving TBGs. The baselines include Deep
Q-Network (DQN) (Narasimhan et al., 2015) and Deep Recurrent Q-Network (DRQN) (Yuan et al.,
2018). DQN selects the action based on the current observation, whereas DRQN models the history
of action and observations with an RNN. For fair comparisons, we replace their LSTM-based text

6

Published as a conference paper at ICLR 2022

encoders with transformers. We compare an extension of DRQN by using an episodic counting bonus
to encourage exploration, which is denoted as (DRQN+) (Yuan et al., 2018). Our next baseline is KG-
A2C (Ammanabrolu & Hausknecht, 2020), which builds a graph-based state space and applies the
Actor-Critic algorithm for learning the policy. We replace their action generator with an action selector
for comparison. The last baseline is GATA (Adhikari et al., 2020) that learns a graph-structured
representation to model the environment dynamics and select actions based on this representation.
We experiment with several options of GATA, including: 1) GATA-GTP that pre-trains the discrete
graph updater with ground-truth graphs from the FTWP dataset (Appendix A.6). Note that we apply
the same pre-training dataset for our OS-ELBo objective. 2) GATA-OG that learns a continuous
graph updater by reconstructing the text observation. 3) GATA-COC that trains the graph updater
with a contrastive observation classification objective. Both GATA-OG and GATA-COC follow the
self-supervised setting, which offers fair comparison to our SS-ELBo objective.

Table 2: Normalized testing scores and averaged improvement (↑) over DQN in six difficulty levels (0
to 5). For each method, we implement three independent runs (check random seeds in Appendix A.1).
We select the top-performing agents in validation games and report their testing scores.

Type Model 0 1 2 3 4 5 ↑

Model-
Free

Algorithm

DQN 90.0 62.5 32.0 38.3 17.7 34.6 0
DRQN 95.0 58.8 31.0 36.7 21.4 27.4 -0.8

DRQN+ 95.0 58.8 33.0 33.3 19.5 30.6 -0.8
KG-A2C 96.7 55.5 31.0 54.3 26.8 30.1 +3.2

GATA-GTP 95.0 62.5 32.0 51.7 21.8 23.5 +1.9
GATA-OG 100 66.2 36.0 58.3 14.1 45.0 +7.4

GATA-COC 96.7 62.5 33.0 46.7 25.9 33.4 +3.9

Model-
Based

Planning

OOTD learned by the Object-Supervised (OS) ELBo Objective
OS-Dyna-Q 100 62.5 42.0 58.3 21.8 48.2 +9.6
OS-MCTS 95.0 77.5 56.0 63.3 24.9 42.9 +14.1

OS-Dyna-Q + MCTS 95.0 78.8 57.0 71.7 27.7 38.1 +15.5
OOTD learned by the Self-Supervised (SS) ELBo Objective

SS-Dyna-Q 100 62.5 48.0 53.3 30.5 47.0 +11.0
SS-MCTS 100 70.0 51.0 70.0 27.3 54.4 +16.3

SS-Dyna-Q + MCTS 100 81.3 56.9 75.0 31.4 58.4 +21.3

4.1 CONTROLLING PERFORMANCE IN TBG ENVIRONMENTS

Table 2 shows the agent’s controlling performance at different difficulty levels. Equipped with the
OOTD model, our agent implements model-based planning and achieves leading performance over
the agents based on model-free algorithms. We find the SS-based OOTD models outperform the
OS-based models by scoring more rewards at 4 (out of 6) difficulty levels. Although the object
signals facilitate a better prediction of dynamics, this advantage can not be directly transferred to
controlling performance. This is commonly known as the objective-mismatch problem in model-
based RL (Lambert et al., 2020). On the other hand, SS-based models are directly optimized toward
generating a better prediction of rewards, which are important signals for controlling. The reward-
irrelevant information is filtered to derive a more compressed representation for better generalization
ability. Another important finding is that our OOTD-based agents perform better than other graph-
based agents (e.g., GATA-GTP and KG-A2C). This is because OOTD is doing model-based RL by
learning the dynamics at the object level while other graph-based techniques are model free since
they learn to extract object representations, but not to predict their dynamics.

Sample Efficiency. We empirically demonstrate the sample efficiency of our model-based agents
by comparing their training performance with other model-free agents. This experiment studies
three variations of proposed methods, including 1) OS-Dyna-Q and 2) SS-Dyna-Q that implement
the Q-Dyna algorithm and train the OOTD models with the OS-ELBo objective and the SS-ELBo
objective respectively. 3) Object-Oriented (OO)-DQN that trains the OOTD model to predict object
states, based on which we compute action values. As a model-free method, OO-DQN does not
expand the replay buffer with the samples generated by dynamics models. Figure 3 shows the training
curve for 6 difficulty levels. The learning speed of proposed model-based algorithms (OS-Dyna-Q
and SS-Dyna-Q) is generally faster than that of MF algorithms, but we observe an exception at
the games of difficulty level 5, where GATA-OG converges faster. We find it generally takes more

7

Published as a conference paper at ICLR 2022

samples to learn the interactions among K objects and their relations to action values. It explains
why (MF)-Dyna-Q converges slower than others. However, the object-based value function performs
better than that based on raw observation in terms of normalized scores.

Figure 3: Training Curves: Agents’ normalized scores for the games at different difficulty levels. The
plot shows mean± std normalized scores computed with three independent runs.

4.2 ABLATION STUDIES FOR OBJECT-ORIENTED DYNAMICS

To understand the importance of our OOTD design, we empirically study the options of 1) removing
the BIDAF attentions by directly applying the action and node embeddings to predict object states (i.e.,
No-Attentions Dynamics (NAt-Dyna)) and 2) removing independent transition layers by building a
single layer to predict states for all objects (i.e., Single-Layer Dynamics (SLa-Dyna)). We compare
these models with our OOTD models trained by the OS-ELBo objective (OS-OOTD) and the SS-
ELBo objective (SS-OOTD). To evaluate how well the modified model pkT ′ captures object dynamics,
we sample object states zk,t ∼ pkT ′(zk,t|at−1, zt−1) for a total of K objects, visualize these states
with the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Van der Maaten & Hinton,
2008), and quantify the dynamics prediction performance.

Object States Visualization. In this experiment, we randomly pick 20 games from the testing
games of all difficulty levels. Within each game, pkT ′ computes the states zk,1, · · · , zk,T with
randomly selected actions a0, . . . , aT−1, and t-SNE embeds zk,t into a vector of 2 dimensions.
Figure 4 visualizes the embedded vectors labelled by 10 randomly selected objects. The object states
computed by our OOTD model are distinguishable, and thus t-SNE embeds the states for the same
object close to each other. This phenomenon is not observable when we apply a single layer for
computing object states (i.e., SLa-Dyna). Another important observation is that the OOTD model
automatically learns to generate similar states for similar objects. For example, OS-OOTD generates
similar states for the object of ingredients (e.g., parsley, apple, carrot, and potato marked by the dark
frame). A similar phenomenon, although less obvious, can be observed for SS-OOTD. However, such
a shrinkage effect disappears in NAt-Dyna, which explains the importance of bidirectional attentions.

Figure 4: Scatter plots for T-SNE-embedded object states. From left to right, the states are sampled
from SLa-Dyna, NAt-Dyna, OS-OOTD and SS-OOTD (from left to right).

Probing Experiment. This experiment studies how well our OOTD models can capture useful
information from the TBG environments. We map the sampled object states z1,t, . . . , zK,t to memory

8

Published as a conference paper at ICLR 2022

graphs ĥt and rewards r̂t with the additional graph decoder p′G and reward model p′r. The performance
of the dynamics models is quantified by whether ĥt and r̂t can match the ground-truth h∗t and r∗t
in the FTWP dataset (Appendix A.6). During sampling, the input actions a1, . . . , aT follow the
recorded trajectories in FTWP. The ground-truth rewards in FTWP games is either one or zero, and
we perform an entry-level evaluation (e.g., ht[i, j, c]) on the adjacency matrix of a predicted graph.
It allows us to evaluate whether the real rewards and triplets are captured with F1 scores. For a fair
comparison, the games in the FTWP dataset are divided into training (80%), validation (10%) and
testing (10%) sets, based on which we first freeze the parameters in the dynamics models and then
update the added p′G and p′r with data in training games.

Table 3: Graph-generation (G-gen),
graph updating (G-upt) and rewards
prediction (r-pred) performance.

G-gen G-upt r-pred
Random 93.5 57.4 49.5

Real 99.2 95.9 94.0
Ablated Dynamics models

SLa-Dyna 84.4 75.4 85.5
NAt-Dyna 90.9 75.2 88.7

OOTD models
OS-OOTD 99.0 83.8 92.5
SS-OOTD 77.2 65.3 94.2

Table 3 shows the testing performance. We study both 1)
the graph-Generation performance which measures the accu-
racy of generating all the candidate triplets in a graph and 2)
the graph-Updating performance which evaluates only the
triplets that have been updated at the current step t. We
add a Real and a Random baseline that feed the ground-
truth graph h∗t and a randomly generated graph hRMt into
the graph encoder of transition models. They study the prob-
ing performance when ground-truth graphs are known and
when the posterior collapses for the transition model (so
pkT ′(zk,t|at−1, zt−1) = pkT ′(zk,t)). The results show that
OS-OOTD achieves a better graph prediction performance by
applying the object-supervised objectives (OS-ELBo), but SS-
OOTD has higher reward prediction accuracy, since SS-ELBo includes an end-to-end training to
predict future rewards, which filters the reward-irrelevant object information. Another observation is
that removing independent layers and directional attentions significantly degrade the graph prediction
performance. It demonstrates that they are important components of our OOTD model.

5 RELATED WORK

DRL Agent for Text-Based Games (TBGs). TBGs (e.g., Textworld (Côté et al., 2018) and inter-
active fictional games (Hausknecht et al., 2020)) are interactive simulations with text observations
and actions. To solve TBGs, previous DRL agents typically applied advanced neural models for
representing the state and action sentences, including recurrent models (Narasimhan et al., 2015; Jain
et al., 2020; Zelinka, 2018; Madotto et al., 2020; Adolphs & Hofmann, 2020), Transformers (Adhikari
et al., 2020; Ammanabrolu et al., 2020; Urbanek et al., 2019), relevance networks (He et al., 2016),
and convolutional neural networks (Yin & May, 2019; Zahavy et al., 2018; Yin & May, 2019). Since
states in the TBG environments are partially observable, many previous studies have formulated
TBGs as POMDPs and modelled the history of observations with a Deep Recurrent Q-Network
(DRQN) (Yuan et al., 2018) or a knowledge graph (Hausknecht et al., 2019; Ammanabrolu & Riedl,
2019; Ammanabrolu & Hausknecht, 2020; Adhikari et al., 2020; Ammanabrolu et al., 2020). Previous
works are commonly based on model-free Q learning while we explore model-based planning.

Object Oriented Reinforcement Learning. Diuk et al. (2008) proposed modelling the transition
and reward models at the object level. Previous work (Mohan & Laird, 2011; Joshi et al., 2012;
da Silva & Costa, 2018; Marom & Rosman, 2018; da Silva et al., 2019) explored training DRL agents
with the object-level features. However, object features are not commonly available from the RL
environments. Recent works have extracted object representations from states with optical flow (Goel
et al., 2018), variational models (Burgess et al., 2019) and structured convolutional layers (Kipf et al.,
2020; Finn et al., 2016; Zhu et al., 2018; 2020). Previous works commonly studied image-based fully
observable environments whereas we explore text-based partially observable environments.

6 CONCLUSION

We proposed an OOTD model that enables planning in text-based environments. The OOTD model
learned a graph representation for capturing object dynamics and predicted the belief of object
states with independent transition layers. Empirical results demonstrated that OOTD-based agents
outperformed model-free baselines in terms of controlling performance and sample efficiency. We
then provided an ablation study to show the importance of OOTD components. A promising future
direction will be expanding our OOTD model to parser-based games where the agent must generate
the commands character by character without knowing candidate actions.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We acknowledge the funding from the Canada CIFAR AI Chairs program, and the support of the
Natural Sciences and Engineering Research Council of Canada (NSERC). Resources used in this work
were provided, in part, by the Province of Ontario, the Government of Canada through CIFAR, and
companies sponsoring the Vector Institute https://vectorinstitute.ai/partners/.

ETHICS STATEMENT

In this work, we study model-based planning in a simulated (TBG) environment. Although the
task itself has limited consequences for society, we take a broader view of our work and discuss
its potential influence on future research that might have a considerable impact on our society. We
believe developing an autonomous RL agent for TBGs serves as the stepping stone toward real-world
applications where the machine cooperates or interacts with humans for some specific tasks. A
concrete example of these applications will be the auto-dialogue systems, where the machine must
respond to human concerns by conveying accurate information and solving the problem with humans.
During this process, failing to communicate clearly, sensibly, or convincingly might also cause harm,
for example, without sufficient calibration, the machine could generate improper words or phrases
that might potentially cause a bias toward some minorities or underrepresented groups. How to
eliminate such bias will be an important direction of future research.

REPRODUCIBILITY STATEMENT

This section introduces how we facilitate the reproducibility from the following perspectives:

Model Implementation. Section 4 introduces our approach to dividing the training, validation, and
testing datasets as well as the running settings based on the constructed datasets. We report the
hyper-parameters for training our OOTD model and the seeds for independent runs in Appendix A.1.
The computing resources and running time are discussed in Appendix A.7.

Code and Dataset. Please find our implementation on Github1.

REFERENCES

Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikuláŝ Zelinka, Marc-Antoine Rondeau,
Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, and William L. Hamilton. Learning
dynamic belief graphs to generalize on text-based games. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Leonard Adolphs and Thomas Hofmann. Ledeepchef deep reinforcement learning agent for families
of text-based games. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 7342–7349. AAAI Press, 2020.

Prithviraj Ammanabrolu and Matthew J. Hausknecht. Graph constrained reinforcement learning
for natural language action spaces. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Prithviraj Ammanabrolu and Mark Riedl. Playing text-adventure games with graph-based deep
reinforcement learning. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pp. 3557–3565. Association for Computational
Linguistics, 2019.

Prithviraj Ammanabrolu, Ethan Tien, Matthew J. Hausknecht, and Mark O. Riedl. How to avoid
being eaten by a grue: Structured exploration strategies for textual worlds. CoRR, abs/2006.07409,
2020.

1https://github.com/Guiliang/OORL-public

10

https://vectorinstitute.ai/partners/

Published as a conference paper at ICLR 2022

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging linguistic
structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 1: Long Papers, pp. 344–354. The Association for Computer
Linguistics, 2015.

Christopher P. Burgess, Loïc Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matthew
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation.
CoRR, abs/1901.11390, 2019.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pp. 41–75. Springer, 2018.

Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas Bonnard.
Continuous upper confidence trees. In Carlos A. Coello Coello (ed.), Learning and Intelligent
Optimization - 5th International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected
Papers, volume 6683 of Lecture Notes in Computer Science, pp. 433–445. Springer, 2011.

Felipe Leno da Silva and Anna Helena Reali Costa. Object-oriented curriculum generation for
reinforcement learning. In Elisabeth André, Sven Koenig, Mehdi Dastani, and Gita Sukthankar
(eds.), Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pp. 1026–1034. International
Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2018.

Felipe Leno da Silva, Ruben Glatt, and Anna Helena Reali Costa. MOO-MDP: an object-oriented
representation for cooperative multiagent reinforcement learning. IEEE Trans. Cybern., 49(2):
567–579, 2019.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
reinforcement learning. In William W. Cohen, Andrew McCallum, and Sam T. Roweis (eds.), Ma-
chine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki,
Finland, June 5-9, 2008, volume 307 of ACM International Conference Proceeding Series, pp.
240–247. ACM, 2008.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. CoRR, abs/1901.10995, 2019.

Chelsea Finn, Ian J. Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 64–72, 2016.

Ross B. Girshick. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pp. 1440–1448. IEEE Computer Society, 2015.

Vikash Goel, Jameson Weng, and Pascal Poupart. Unsupervised video object segmentation for deep
reinforcement learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 5688–5699, 2018.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. CoRR, abs/1909.10893, 2019.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pp. 2555–2565. PMLR, 2019.

11

Published as a conference paper at ICLR 2022

Matthew J. Hausknecht, Ricky Loynd, Greg Yang, Adith Swaminathan, and Jason D. Williams.
NAIL: A general interactive fiction agent. CoRR, abs/1902.04259, 2019.

Matthew J. Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Inter-
active fiction games: A colossal adventure. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 7903–7910. AAAI Press,
2020.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association for Computer Linguistics, 2016.

Vishal Jain, William Fedus, Hugo Larochelle, Doina Precup, and Marc G. Bellemare. Algorithmic
improvements for deep reinforcement learning applied to interactive fiction. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020,
pp. 4328–4336. AAAI Press, 2020.

Mandar Joshi, Rakesh Khobragade, Saurabh Sarda, Umesh Deshpande, and Shiwali Mohan. Object-
oriented representation and hierarchical reinforcement learning in infinite mario. In IEEE 24th
International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, Novem-
ber 7-9, 2012, pp. 1076–1081. IEEE Computer Society, 2012.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Thomas N. Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world
models. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, 17th European
Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings, volume
4212 of Lecture Notes in Computer Science, pp. 282–293. Springer, 2006.

Leonid Kuvayev and Richard S Sutton. Model-based reinforcement learning with an approximate,
learned model. In Proceedings of the ninth Yale workshop on adaptive and learning systems, pp.
101–105, 1996.

Nathan O. Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. In Alexandre M. Bayen, Ali Jadbabaie, George J. Pappas,
Pablo A. Parrilo, Benjamin Recht, Claire J. Tomlin, and Melanie N. Zeilinger (eds.), Proceedings
of the 2nd Annual Conference on Learning for Dynamics and Control, L4DC 2020, Online Event,
Berkeley, CA, USA, 11-12 June 2020, volume 120 of Proceedings of Machine Learning Research,
pp. 761–770. PMLR, 2020.

Andrea Madotto, Mahdi Namazifar, Joost Huizinga, Piero Molino, Adrien Ecoffet, Huaixiu Zheng,
Alexandros Papangelis, Dian Yu, Chandra Khatri, and Gökhan Tür. Exploration based language
learning for text-based games. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pp. 1488–1494. ijcai.org, 2020.

Ofir Marom and Benjamin Rosman. Zero-shot transfer with deictic object-oriented representation in
reinforcement learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 2297–2305, 2018.

Shiwali Mohan and John E. Laird. An object-oriented approach to reinforcement learning in an action
game. In Vadim Bulitko and Mark O. Riedl (eds.), Proceedings of the Seventh AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2011, October 10-14, 2011,
Stanford, California, USA. The AAAI Press, 2011.

12

Published as a conference paper at ICLR 2022

Karthik Narasimhan, Tejas D. Kulkarni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. In Lluís Màrquez, Chris Callison-Burch, Jian
Su, Daniele Pighin, and Yuval Marton (eds.), Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pp. 1–11. The Association for Computational Linguistics, 2015.

Judea Pearl. Causality. Cambridge university press, 2009.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In Francis R. Bach and David M. Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, 2015.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In Aldo Gangemi, Roberto
Navigli, Maria-Esther Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and
Mehwish Alam (eds.), The Semantic Web - 15th International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, volume 10843 of Lecture Notes in Computer Science,
pp. 593–607. Springer, 2018.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger
(eds.), Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp.
3104–3112, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
IEEE Information Theory Workshop, ITW 2015, Jerusalem, Israel, April 26 - May 1, 2015, pp. 1–5.
IEEE, 2015.

Adam Trischler, Marc-Alexandre Côté, and Pedro Lima. First TextWorld Problems, the competition:
Using text-based games to advance capabilities of AI agents. 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.),
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp.
2071–2080. JMLR.org, 2016.

Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktäschel, Douwe Kiela, Arthur Szlam, and Jason Weston. Learning to speak and act in a fantasy
text adventure game. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 673–683. Association for
Computational Linguistics, 2019.

13

Published as a conference paper at ICLR 2022

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Arthur Wandzel, Yoonseon Oh, Michael Fishman, Nishanth Kumar, Lawson L. S. Wong, and Stefanie
Tellex. Multi-object search using object-oriented pomdps. In International Conference on Robotics
and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pp. 7194–7200. IEEE,
2019.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. CoRR, abs/1907.02057, 2019.

Xusen Yin and Jonathan May. Comprehensible context-driven text game playing. In IEEE Conference
on Games, CoG 2019, London, United Kingdom, August 20-23, 2019, pp. 1–8. IEEE, 2019.

Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sordoni, Romain Laroche, Remi Tachet des Combes,
Matthew J. Hausknecht, and Adam Trischler. Counting to explore and generalize in text-based
games. CoRR, abs/1806.11525, 2018.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, and Shie Mannor. Learn what
not to learn: Action elimination with deep reinforcement learning. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 3566–3577,
2018.

Mikuláŝ Zelinka. Baselines for reinforcement learning in text games. In Lefteri H. Tsoukalas, Éric
Grégoire, and Miltiadis Alamaniotis (eds.), IEEE 30th International Conference on Tools with
Artificial Intelligence, ICTAI 2018, 5-7 November 2018, Volos, Greece, pp. 320–327. IEEE, 2018.

Guangxiang Zhu, Zhiao Huang, and Chongjie Zhang. Object-oriented dynamics predictor. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 9826–9837, 2018.

Guangxiang Zhu, Jianhao Wang, Zhizhou Ren, Zichuan Lin, and Chongjie Zhang. Object-oriented
dynamics learning through multi-level abstraction. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 6989–6998.
AAAI Press, 2020.

14

Published as a conference paper at ICLR 2022

A MODEL IMPLEMENTATION DETAILS AND DATASETS

A.1 HYPER-PARAMETERS

We report the key hyper-parameters that have been applied for model implementation. We set the
number of candidate objects K to 99 and the number of candidate relations to 10 by following the
settings in (Adhikari et al., 2020), which show that the agent can properly solve a game by modelling
these objects and relations. The learning rate of policy training and dynamics model training is
set to 0.0001. The discount factor γ is set to 0.9. The size of the hidden layers and the size of
z in our OOTD model are set to 32. The transition layers of different objects are parameterized
independently, so the neural network predicts 32× 99 = 3, 168 values at each step during dynamics
modelling. The sizes of word embedding and node embedding are set to 300 and 100 respectively.
These numbers are determined experimentally, which could provide promising performance with a
reasonable computational resource. The full list of hyper-parameters is recorded in the .yaml file in
our submitted code. In our experiment, the random seeds we select are 123, 321, and 666.

A.2 RESAMPLING FOR COMPUTING THE GRAPH LIKELIHOOD

The graph likelihood pΩ(ht|zt) computes the probability of generating ht with a graph decoder. As
it is discussed in Section 3.1, our graph decoder is implemented as a scoring function for entry-level
prediction. However, ht is a graph with significant sparsity, for example, the corresponding adjacency
matrix assigns positive labels (i.e., 1) for an average of 97.6 out of all 98,010 entries. As a result,
directly optimizing toward h∗t creates a large negative bias. In other words, the decoder can achieve a
satisfying accuracy by labelling all the entries with 0s, which does not capture any object information.
To solve this problem, we implement a re-sampling technique that extracts all the positive samples
(the entries labelled with one) from h∗t and sample an equivalent number of negative samples from
the rest of the entries. These positive and negative samples are used to estimate the graph likelihood.

A.3 GOAL EXTRACTOR

At a time step t, the goal extractor generates the goal gt from the object states zt by optionally
conditioning on the previous goal gt−1 and observed text ot. The goal can be represented by a
sequence of words and symbols that follows the triplet format. To generate this goal, we introduce
two kinds of extractors that are built for the OOTD learned by the OS-ELBo and the SS-ELBo
objectives.

Goal Extractor with the OS-ELBo objective. Under this setting, the predicted memory graph ĥOSt
captures the sparsity of object observations and forms a direct prediction of the ground truth graph ĥ∗t
(check Figure 7). We can build a rule-based goal extractor that maps zt to ĥOSt and checks whether
hOSt captures certain relations (e.g., ’need’) between two objects. If there is such a relation, we
directly output the sentence of corresponding triplets by following a format "[object 1 $ relation $
object 2]". Such a simple extractor can generalize well to training and testing games if ĥOSt manages
to capture correct relations.

Goal Extractor with the SS-ELBo objective. The memory graph ĥOSt learned by the SS-ELBo
objective captures a latent representation of ĥ∗t . This latent representation is not directly interpretable,
and thus we build a word-by-word sequence generator whose output is the goal to be predicted (gt)
and inputs are zt, gt−1 and ot. To train this model, we manually build a goal learning dataset that
collects pairs of model input/output from the training games. During testing, we predict the goal after
interacting with the environment and update the current goal if a valid goal sentence is generated.

A.4 OBJECT EXTRACTOR

The object extractor fe(ot, at−1, ht−1) predicts the memory graph ht by conditioning on current
observations ot and action at. Figure 5 shows the architecture of fe. It shares a similar structure to
our OOTD model, but the key differences are 1) fe is a deterministic model which only maximizes
the likelihood of predicting h∗t during training. 2) fe captures object information from ot, whereas

15

Published as a conference paper at ICLR 2022

ot is not available for our OOTD model, and it is the motivation why OOTD predicts the belief
(distribution) of states while fe directly generates the deterministic states.

RGCN
Graph
Encoder

BIDAF𝒂"#$

𝒉"#$

MLP

MLP

MLP

𝒆$

𝒆'

𝒆(

……

……
ComplEx
Graph
Decoder

𝒛$,"

𝒛',"

𝒛(,"

Attentions
𝑩",- , 𝑩".-

𝒐" BIDAF

𝒉"

Figure 5: The object extractor.

A.5 OBSERVATION ENCODER.

The observation encoder qE is defined by:

νak,t−1 =
∑

j
bak,jψ

a(aj,t−1) where bak = softmax(Bae
k,:) ∈ [0, 1]J ,

νet−1 =
∑

k
bekek,t−1 where be = softmax(maxcol(B

ae)) ∈ [0, 1]K ,

νok,t−1 =
∑

j
bok,jψ

o(aj,t−1) where bok = softmax(Boe
k,:) ∈ [0, 1]J

ν′,et−1 =
∑

k
boe,ek ek,t−1 where boe,e = softmax(maxcol(B

oe)) ∈ [0, 1]K (8)

qkE(zk,t|ot,at−1, zk,t−1) = N (µqk,t,σ
q
k,t) where [µqk,t,σ

q
k,t] = ψqk([νok,t−1,ν

′,e
t−1,ν

a
k,t−1,ν

e
t−1, ek,t−1])

ψo is a transformer-based text embedding function (Vaswani et al., 2017) for observations, and ψqk is
implemented by a MLP. The transition layers ψq1, . . . , ψ

q
K are parameterized independently.

Figure 6 shows the structure of an observation encoder qkE , which shares a similar structure to the
transition (OOTD) model (Figure 3), but it includes an additional BIDAF network to learn an attention
matrixBoe, where boek,i measures the similarity between the representation of the kth object and the
ith word in the current observation ot. It predicts the memory graph ht from zqt with a ComplEx
graph decoder (Section 3.1). It predicts the current observation ôt and reward rt with a sequence
decoder and the reward function (Section 3.2).

RGCN
Encoder

Observation
BIDAF

𝑎"#$

ℎ"#$
Complex
Decoder

𝒛$,"#$

𝒛(,"#$

𝒛),"#$

……

……

Graph/
sequence
Decoder

𝑔+"/𝑜+"

𝑔"

Mask
Mean 𝑟"

Action
BIDAF

𝑜"

Post MLP

Post MLP

Post MLP
……

𝒩 𝜇$,"
1 , 𝜎$,"

1 	~	𝑧$,"
1

𝒩(𝜇(,"
1 , 𝜎$,"

1) ~	𝑧(,"
1

𝒩 𝜇),"
1 , 𝜎$,"

8 ~𝑧),"
1

……

For the OS/SS ELBo

For the SS ELBo

𝑒$,"#$

𝑒(,"#$

𝑒),"#$

Attentions
𝑩";< , 𝑩"=<

Figure 6: The observation encoder.

A.6 FTWP DATASET

The FTWP dataset is a public dataset that supports pre-training the dynamics model 2. Trischler et al.
(2019) provided the First TextWorld Problems (FTWP) dataset. The dataset consists of TextWorld

2The dataset can be downloaded at https://aka.ms/ftwp/dataset.zip

16

https://aka.ms/ftwp/dataset.zip

Published as a conference paper at ICLR 2022

games in a cooking theme across a wide range of difficulty levels. For each game, the expert trajectory
and the memory graph ht at each time step are recorded. The original dataset has only 10 games for
each difficulty level. This is insufficient for dynamics model pre-training, so Adhikari et al. (2020)
further expanded this dataset by adding more games into this dataset by utilizing the logic in the
Textworld game engine. The specific generation rules are described in (Adhikari et al., 2020). After
expansion, the dataset contains 4440 games for training, 222 games for validation, 514 games for
testing. To ensure fairness when using this dataset, we confirm that there is no overlap between the
FTWP and the games we used to train and evaluate our planning algorithms.

A.7 COMPUTATIONAL RESOURCE AND RUNNING TIME

We run the experiment on a cluster operated by the Slurm workload manager. The cluster has multiple
kinds of GPUs, including Tesla T4 with 16 GB memory, Tesla P100 with 12 GB memory, and RTX
6000 with 24 GB memory. We used machines with 24 GB of memory for pre-training the object
extractor and 64 GB for training the OOTD model. The number of running nodes is 1, and the number
of CPUs requested per task is 32. Given the aforementioned resources, pre-training can be completed
within 4 days (96 hours), and training the dynamics model takes 6 days (144 hours).

Table 4: Game statistics at different difficulty levels.

Level Recipe Size #Locations Max Scores Need Cut Need Cook #Action Candidates #Objects
0 1 1 3 7 7 10.5 15.4
1 1 1 4 X 7 11.5 17.1
2 1 1 5 X X 11.8 17.5
3 1 9 3 7 7 7.2 34.1
4 3 6 11 X X 28.4 33.4
5 Mixture of Levels[1,2,3,4}

17

Published as a conference paper at ICLR 2022

B ALGORITHMS

Algorithm 1: Dyna-Q Training
Input :Transition Model: pT (zt+1|at, zt),

Object Encoder: qE(zt+1|ot+1, at, zt),
Reward Model: pr(rt+1|zt+1, at, gt),
Object Extraction function: fe(ht, at, ot+1),
Graph Decoder: pΩ(ht|zt),
Training game ids I.

Initialize Replay Buffers D;
while not converged do

Initialize belief state z0 =random numbers, action a0 ="restart", goal g0 ="<pad>" and
memory graph h0 = 0C×K×K ;

Randomly pick a game id ∈ I, set t = 0;
while not end do

/* Q learning with environment */
ot+1, rt+1 ← env(at, id);
Extract object information ht+1 = f(at, zt, ot+1);
Update object belief zt+1 ∼ qE(zt+1|ot+1, at, zt);
Extract goal: gt+1 = ExtactGoal(zt+1, ot+1, gt);
Action selection: ât+1 = EpsilonGreedy(Q(zt+1, at+1, gt+1));
Expand the replay buffer: D ∪ {zt, ht, at, gt, rt+1, zt+1, ht+1, gt+1};
t = t+ 1 and end = CheckEnd(env)

end
for update step c=1,...,C do

/* Model fitting */
Sample a transition: T = {zt, ht, at, gt, rt+1, zt+1, ht+1, gt+1} from the dataset D;
Update the reward model to minimize the L1Smooth loss (Equation 6) with T ;
Update the transition model to minimize the OS-ELBO (Equation 5) objective or the

SS-ELBO objective (Equation 7) with T ;
Update the Q function to minimize the TD Loss (Equation 1) with T ;
for explore step b=1,...,B do

/* Exploration with the transition and reward models */
Randomly select a′τ ∈ A ;
z′τ+1 ∼ pT (z′τ+1|a′τ , zτ), r′τ+1 ∼ pr(r′t+1|z′τ+1, a

′
τ , gτ);

Update the transition T ′ = {zt, gt, a′t, r′t+1, z
′
t+1, gt+1};

Update the Q function to minimize the TD Loss (Equation 1) with T ;
end

end
end

18

Published as a conference paper at ICLR 2022

Algorithm 2: MCTS Testing
Input :Transition Model: pT (zt+1|at, zt),

Object Encoder: qE(zt+1|ot+1, at, zt),
Reward Model: pr(rt+1|zt+1, at, gt),
Action Value function: Q(zt, at, gt),
Testing game ids I

Initialize belief state z0 =random numbers, action a0 ="restart", and goal g0 ="<pad>";
Initialize reward bufferR;
for game id id ∈ I do

Initialize root N0 = InitTree(Q(zt, at, gt)), set t = 0 and R = 0;
while not end do

ot+1, rt+1 ← env(at, id) and R = R+ rt+1;
Update object belief zt+1 ∼ qE(zt+1|ot+1, at, zt);
Extract goal: gt+1 = ExtactGoal(zt+1, ot+1, gt);
Select action: ât+1 = MCTS_Simulations(Nt, zt+1, gt+1, pT (·), pr(·), Q(·));
Move the search node: Nt+1 = Move(Nt, ât+1);
Expand t = t+ 1 and end = CheckEnd(env)

end
Buffer total rewardsR = R∪R

end
output :Reward bufferR

C COMPLEMENTARY RESULTS

C.1 GRAPH VISUALIZATION

Graph Visualization. Figure 7 illustrates examples of the ground-truth memory graph h∗t and the
graphs learned by the OS-ELBo (hOSt) and SS-ELBo (hSSt) objectives. Since the space of adjacency
matrices is large (K ×K × C) while the observed object information is limited, h∗t can be represent
by a sparse matrix. Supervised by predicted graphs ĥt, OS-ELBo captures the sparsity, and hOSt
is a direct approximation to h∗t . However, graph information are unavailable for the SS-ELBo
objective, so hOSt forms a dense latent representation of h∗t . Similar phenomenon can be observed in
GATA (Adhikari et al., 2020). We study how well this latent representation and the corresponding
object states can represent the object dynamics in Section 4.2.

Figure 7: Adjacency tensors corresponding the "is" relation in memory graphs ht. From left to right:
1) the ground-truth graph, and the graph learned by 2) the OS-ELBo objective, 3) the SS-ELBo
objective (Section 3.3), and 4) GATA (a graph-based dynamics model baseline) (Adhikari et al.,
2020).

C.2 PLANNING EFFICIENCY

We compare the efficiency of OOTD-based planning algorithms (including Dyna-Q, MCTS, and Dyna-
Q+MCTS) by studying which method can gather more rewards with a limited number of selected
actions. Figure 8 shows results. Among the planning algorithms, Dyna-Q+MCTS significantly
outperforms others. It is because the Q network provides prior knowledge over the preference of

19

Published as a conference paper at ICLR 2022

actions, based on which MCTS implements Monte-Carlo rollouts to generate and evaluate the belief
states of objects. Together, they yield a more accurate look ahead of future rewards.

Figure 8: Planning Curve. The agent are based on the dynamics model with the OS-ELBO objective
(Upper) and the SS-ELBo objective (Lower). The plot showsmean±std normalized scores computed
with three independent runs.

20

	Introduction
	Object Level Planning in Text Domains
	Text-Based Games
	Object-Oriented Partially Observable Markov Decision Processes
	Graph Representation for Objects
	Model-Based Planning in Text-Based Games

	Object-Oriented Dynamics Models
	Object Oriented Transition Model
	Object Oriented Reward Model
	Training Objective for Dynamics Models

	Experiments
	Controlling Performance in TBG Environments
	Ablation Studies for Object-Oriented Dynamics

	Related Work
	Conclusion
	Model Implementation Details and Datasets
	Hyper-Parameters
	Resampling for Computing the Graph Likelihood
	Goal Extractor
	Object Extractor
	Observation Encoder.
	FTWP dataset
	Computational Resource and Running Time

	Algorithms
	Complementary Results
	Graph Visualization
	Planning Efficiency

