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ABSTRACT

The advancement of dynamics models enables model-based planning in complex
environments. Dynamics models mostly study image-based games with fully
observable states. Generalizing these models to Text-Based Games (TBGs), which
often include partially observable states with noisy text observations, is challenging.
In this work, we propose an Object-Oriented Text Dynamics (OOTD) model that
enables planning algorithms to solve decision-making problems in text domains.
OOTD predicts a memory graph that dynamically remembers the history of object
observations and filters object-irrelevant information. To improve the robustness of
dynamics, our OOTD model identifies the objects influenced by input actions and
predicts beliefs of object states with independently parameterized transition layers.
We develop variational objectives under the object-supervised and self-supervised
settings to model the stochasticity of predicted dynamics. Empirical results show
that our OOTD-based planner significantly outperforms model-free baselines in
terms of sample efficiency and running scores.

1 INTRODUCTION

Planning algorithms typically leverage the environment dynamics to solve decision-making prob-
lems (Sutton & Barto, 2018). To plan in unknown environments, the agent must learn a dynamics
model to predict future (belief) states and rewards by conditioning on an action. This dynamics
model enables the implementation of intensive search for optimal actions, which can potentially
increase both sample efficiency and cumulative rewards, compared to model-free methods (Hafner
et al., 2019; Wang et al., 2019; Kaiser et al., 2020). Despite the promising performance, learning
a dynamics model that can accurately generalize at test time is still challenging, especially when
handling a high-dimensional state space for low-level features, e.g., pixels and text.

To facilitate dynamics learning in complex environments, Diuk et al. (2008) proposed an Object-
Oriented Markov Decision Process (OO-MDP) that factorizes world states into object states. They
showed that the agent can find optimal policies with a better sample efficiency by modeling the
dynamics at the object level. Some following works (Finn et al., 2016; Goel et al., 2018; Zhu
et al., 2018; 2020) extended OO-MDPs to image-based games. These methods typically assume full
observability over game states and a fixed input size, which facilitates the use of object masks to
decompose an image into different objects. On the other hand, in Text-Based Games (TBGs), the text
observation, whose length runs from a few words to an entire paragraph, is a partial description of
the current game state, and thus each observation provides information about a limited number of
objects (in fact, only an average of 4.51% of the candidate objects are mentioned in an observation
from Textworld (Côté et al., 2018)). The dynamics model must remember the history of observed
objects to predict accurately their states. Moreover, an observation typically contains lots of noisy
patterns that record object-irrelevant information (e.g., the non-bolded text from ot in Figure 1).
While previous works (Ammanabrolu & Riedl, 2019; Ammanabrolu & Hausknecht, 2020) designed
rule-based heuristics to extract useful information, we expect that dynamically capturing object
information from noisy observations helps to generalize to more environments.

In this work, we design an Object-Oriented Text Dynamics (OOTD ) model that integrates:

1) Graph Representation for Objects. OOTD predicts a memory graph from the input states. The
memory graph, whose nodes correspond to the objects to be modelled, captures the information about
these objects from the beginning of a game. By applying this graph as an information bottleneck for
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dynamics prediction, OOTD filters the object-irrelevant information in the text inputs, which forms a
tighter information plane and facilitates generalization to unseen games (Tishby & Zaslavsky, 2015).

2) Independent Transition Layers. Intuitively, an input action influences the states of a limited
number of objects, for example, when the agent performs "take the carrot from the counter", only
the states of "carrot" and "counter" should be updated. To capture which objects are influenced
and keep others invariant to this update, OOTD learns an action-aware representation for each
object with bi-directional attention and predicts the belief states of objects with independently
parameterized transition layers. This independent mechanism enhances the robustness for dynamics
prediction (Goyal et al., 2019) (also see the ablation study in Section 4.2).

During planning, we predict belief states without knowing rewards and observations. To learn a
stochastic dynamics model, we propose object-supervised and self-supervised Evidence Lower Bound
(ELBo) objectives for training our OOTD model. We evaluate how well the OOTD model supports
planning by implementing planning algorithms (e.g., Dyna-Q (Kuvayev & Sutton, 1996) and Monte
Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006)) based on learned dynamics. Empirical
results show that these planning algorithms significantly outperform other baselines in terms of
game performance and sample efficiency. To support the design of our OOTD model, we include an
ablation study that visualizes the object states and quantifies the dynamics prediction performance.

Contributions: 1) We introduce our approach to implementing model-based planning algorithms for
solving decision-making problems in the text-domain. 2) We propose the OOTD model that learns to
predict beliefs about object dynamics.
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Figure 1: An example of planning from text. We show three objects (cheese, carrot and banana) in
this example. When interacting with the environment (env), the agent encodes the information of
observation ot into object states zt with encoders (q1

E , q2
E , q3
E ). Given a goal gt, the planner determines

the action at by searching with the reward (pr) and transition models (p1
T , p2

T p
3
T ).

2 OBJECT LEVEL PLANNING IN TEXT DOMAINS

In this work, the object-level dynamics are learned and evaluated in Text-Based Games (TBGs), for
which we extend OO-MDPs (Diuk et al., 2008) to capture partial observability. We define a graph
representation to remember object information and introduce the corresponding planning algorithms.

2.1 TEXT-BASED GAMES

Text-Based Games (TBGs) are complex, interactive simulations where an agent explores and plays a
game by processing text observations and responding with text commands. To study the generalization
ability of this policy, many recent works (Yin & May, 2019; Hausknecht et al., 2019; Ecoffet et al.,
2019; Adolphs & Hofmann, 2020; Adhikari et al., 2020) proposed to learn a policy by training with
a set of games and evaluating with games from a hold-out test set. The distributions of rewards
over state-action pairs are different in training and testing games because TBGs assign rewards
by conditioning on specific goals (that are predefined, but unknown). In this setting, TBGs have
different intermediate goals in each game, but they commonly share the same ultimate goals, and the
underlying causal dependencies leading to this ultimate goal are consistent. For example, to solve the
‘First Text-World Problems’ (Côté et al., 2018), an agent should always gather and process cooking
ingredients (e.g., "fry the potato") according to a recipe that it discovers in the game, although the
names and locations of the ingredients are different across different games. This property enables the
generalization of knowledge learned from training games to solve testing games.
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2.2 OBJECT-ORIENTED PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Since an observation reveals only partial information about the game state, we formulate TBGs as
partially observable Markov decision processes (POMDPs). In this work, we extend the POMDP
framework to represent object-level dynamics (Diuk et al., 2008). The Object-Oriented (OO) POMDP
is a tuple 〈S,O,Z,Φ,G,A,R, T , γ〉, where:

• S andO define the spaces of low-level states and observations from the TGB environments while Z
and Φ are the spaces of object-level states and observations. In a TBG, o ∈ O is a text message from
the game environment (e.g., "Please fry the potato."), whereas φ ∈ Φ records the specific objects
and their relations in this message (e.g., a triplet like "potato-need-fry")). To model the object
dynamics, the agent must extract φ from o by distilling objects’ information from text sentences. In
this work, we model object states z ∈ Z (instead of s ∈ S) and learn latent representations for z.

• G and A are the spaces for goals and actions. We study choice-based games (Yin & May, 2019),
where candidate actions At ∈ A are available at time step t. We include a goal variable g to mark
different tasks in each game. Following the Universal MDP (UMDP) (Schaul et al., 2015), the
agent initializes a goal at the beginning of a game and updates it when the task is finished.

• R and T define the spaces of reward and transition models. γ is a discount factor. We assume the
real dynamics models (p∗T and p∗r) are unknown, so we learn the object-oriented transition model
and the reward model, i.e., ∀k ∈ {1, . . . ,K}, pkT (zk,t|zt−1, at−1) ∈ T and pr(rt|zt−1, gt) ∈ R.

In our OO-POMDP, transitions pT , observations φ, and states z are modelled for each object, whereas
actions a and rewards r are defined for the entire environment. This generalizes to popular RL
environments that accept an action and return a reward at every time step. Unlike (Wandzel et al.,
2019) that represented object states with symbolic attributes, we develop a latent object representation
that can generalize to the complex environment with high-dimensional inputs (e.g., text).

2.3 GRAPH REPRESENTATION FOR OBJECTS

We utilize an object-relation-object triplet φ to represent object information. At time step t, φt =
[φt,1, ..., φt,M ] (M is the number of observed triplets at t). Given a total of K candidate objects and
C candidate relations, these triplets can be mapped to a knowledge graph Ωt ∈ {0, 1}C×K×K . Each
entry (c, i, j) ∈ {0, 1} indicates whether there is a relationship r between the ith and jth objects.
This knowledge graph forms a natural representation of object relations since object information in
most observations ot corresponds to either entity attributes (e.g., "potato-is-fried") or to relational
information about entities (e.g., "potato-on-counter" and "bedroom-north_of-kitchen"), which can be
conveniently represented by triplets and the corresponding graph.

Memory Graph. We store the observations up to time step t in a memory graph ht = Ω0 ⊕ Ω1 ⊕
· · · ⊕ Ωt that captures object information observed by the agent since the beginning of a game.
Similar to previous works Adhikari et al. (2020); Ammanabrolu & Riedl (2019); Ammanabrolu &
Hausknecht (2020), we summarize the object-level history with a latent memory graph ht. To update
the memory from t − 1 to t, we learn a graph updater ⊕, and ht = ht−1 ⊕ Ωt. During updating,
⊕ needs to resolve some semantically contradictory triplets, for example "player-at-kitchen" and
"player-at-bedroom" (because the player cannot simultaneously be in two different locations). Our
OOTD model is trained to automatically emulate such an operator. Our transition model (Section 3.1)
is trained to generate ht from zt, allowing the latent object states to capture object relations.

2.4 MODEL-BASED PLANNING IN TEXT-BASED GAMES

Table 1: Object dynamics for planning, where the transi-
tion models and observation encoders are independently
parameterized for a total of K objects.

Transition models
[
pkT (zk,t+1|at, zt)

]K
k=1

Observation encoders
[
qkE(zk,t+1|ot+1, at, zt)

]K
k=1

Reward model pr(rt|zt, gt)
Graph & Obs. decoder pΩ(ht|zt), po(ot|zt)

We introduce model-based planning in
TBGs. Based on the OO-POMDP (Sec-
tion 2.2), at each time step t, we define
latent states zt = [z1,t, . . . , zK,t] for a
total of K objects, text observations ot,
action commands at, and scalar rewards
rt, that follow the stochastic dynamics in
Table 1. The details of these dynamics
models are introduced in Section 3.
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Based on these dynamics, we implement planning algorithms to select an action from candidate
commands At for maximizing the expected sum of rewards Eπ(

∑T
t=0 γ

trt), as shown in Figure 1.
In this work, we study choice-based games (Yin & May, 2019), where the candidate commands
(or actions) At are available and the planner determines the action at ∈ At to be performed. The
planning algorithms include Dyna-Q, Monte-Carlo Tree Search (MCTS) and their combinations:

Dyna-Q (Kuvayev & Sutton, 1996) incorporates dynamics models and Q-learning. Dyna-Q inter-
actively 1) updates the dynamics model with observed transitions and 2) trains the Q network to
minimize the Temporal Difference (TD) loss (Equation 1) based on both observed transitions from the
environment and predicted transitions from the dynamics models. Compared to the model-free Deep
Q-Network (DQN), Dyna-Q is more sample efficient: by expanding the replay buffer with dynamics
models, Dyna-Q converges faster with the same number of interactions from the environment.

LTD = E
[(
rt + γ max

a∈At

Q(zt, a, gt)−Q(zt−1, at−1, gt−1)
)2]

(1)

MCTS (Kocsis & Szepesvári, 2006) is a heuristic search algorithm that builds and updates a search
tree based on environment dynamics. By performing Monte-Carlo simulations organized in a tree
structure, MCTS does an efficient search in environments with large action spaces (Silver et al., 2018).
MCTS iteratively runs multiple playouts. At the ith playout, we implement 1) Selection: Traverse
the tree from the root node to a leaf node (corresponding to object state zτ ) by selecting the action
command ai,t to maximize the Upper Confidence Bound (UCB) (Couëtoux et al., 2011):

ai,t = arg max
a∈At

[
Qi(zt, a, g) + cpuct

√
log(i− 1)

ζi−1(zt, a, g) + 1

]
(2)

where cpuct controls the scale of exploration, and ζi records the visit count at the ith play. 2)
Evaluation: Evaluate the selected leaf zτ with the reward model pr(rτ |zτ , gt). 3) Expansion: Expand
the leaf node by adding child nodes. 4) Back Up: Update the action-values: Qi = (Qi−1ζi−1 +
rτ )/(ζi−1 + 1) and increment the visit count: ζi = ζi−1 + 1 on all the traversed edges.

Dyna-Q + MCTS initializes Q values in MCTS by utilizing the Dyna-Q network. This combination
enables MCTS to perform the tree search with more efficiency and efficacy (Silver et al., 2016).

3 OBJECT-ORIENTED DYNAMICS MODELS

We introduce the Object-Oriented Text Dynamics (OOTD) models, including 1) a transition model
that directly predicts the belief states of objects and 2) a reward model that maps sampled object
states to rewards. Based on these models, the planner determines an action purely based on predicted
beliefs and calibrates its belief with the feedback (observations and rewards) from the environment.
We introduce the object-supervised and self-supervised objectives to train these models.
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Figure 2: Left: The Object-Oriented Transition Model. Right: The Reward Model.

3.1 OBJECT ORIENTED TRANSITION MODEL

Figure 2 illustrates our transition model, which has three major components (a) a graph decoder, (b)
a graph encoder, and (c) independent transition layers.

(a) Graph Decoder. Given the states of K objects zt−1 = [z1,t−1, ..., zK,t−1], we implement a
graph decoder with the ComplEx scoring function (Trouillon et al., 2016) that maps the object states
to a memory graph ht−1 ∈ [0, 1]C×K×K . The scoring function for an entry (c, i, j) (in the adjacency
matrix of ht−1) is implemented by Re(〈ωc, zi,t−1, zj,t−1〉) where ωc ∈ CE is a complex vector for
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the relation c and Re denotes the real part of the decomposition in complex space. The function
can model a large variety of binary relations, including both symmetric and antisymmetric relations.
Based on this scoring function, predicting ht−1 is equivalent to estimating the probability of having a
relation c between object i and j, which can be efficiently approximated with a low-ranked (E � K)
matrix decomposition: ht = [Re(ZW1Z

T ), ..., Re(ZWCZ
T )] where Z ∈ RK×E is the matrix of

object states andWc ∈ CE×E is a complex matrix. In practice, this decomposition enables to map
efficiently from zt−1 to ht−1, therefore scaling our method to environments with numerous objects.

(b) Graph Encoder. We encode the memory graph ht−1 into node representations et−1 =
[e1,t−1, ..., eK,t−1] with a Relational Graph Convolution Network (R-GCN) (Schlichtkrull et al.,
2018). Nodes in ht correspond to candidate objects and RGCN performs message passing between
nodes, so ek,t−1 captures the semantic information of the kth object and its relations to other nodes
(objects). Compared to zt−1, et−1 denotes the object embeddings after taking into account relations
to other objects in the graph. The graph can be thought as a succinct latent representation that ignores
irrelevant object information in text observations when predicting the next state zt.

(c) Independent Transition Layers. TBG environments typically contain a large population of
objects, and each action can only affect a few underlying objects. In order to improve the robustness
of the dynamics, we utilize 1) a Bi-Directional Attention Flow (BIDAF) network (Seo et al., 2017) to
identify the affected objects and 2) a group of transition layers to predict the belief state of objects by
following the Independent Causal Mechanism (ICM) framework (Pearl, 2009).

Given et−1 and an action at−1 = [a1,t−1, ..., aJ,t−1] (a sentence of J words), the BIDAF network
learns an attention matrixBae ∈ [0, 1]K×J , where bk,j measures the similarity between the represen-
tation of the k-th object and the embedding of the j-th word. To learn an action-aware representation
of object, we compute 1) action-to-object attentions be that indicate which object representations
have the closest similarity to one of the action words and are hence critical for modelling the impact of
the action words; 2) object-to-action attentions bak that indicate which action words are most relevant
to the kth object representation. The action-aware object representation concatenates the attended
action vector νak,t−1, the attended object representation νet−1 and the initial object representation
ek,t−1: νak,t−1 =

∑
j
bak,jψ

a(aj,t−1) where bak = softmax(Bae
k,:) ∈ [0, 1]J ,

νet−1 =
∑

k
bekek,t−1 where be = softmax(maxcol(B

ae)) ∈ [0, 1]K ,

pkT (zk,t|at−1, zt−1) = N (µk,t,σk,t) where [µk,t,σk,t] = ψpk([νak,t−1,ν
e
t−1, ek,t−1]) (3)

Here ψa is a transformer-based text embedding function (Vaswani et al., 2017) for the input action,
and ψpk is implemented by a MLP. The transition layers ψp1 , . . . , ψ

p
K are parameterized independently.

3.2 OBJECT ORIENTED REWARD MODEL

We learn a reward model pr(rt|zt, gt) based on the predicted belief states. This reward model is
important for learning goal-conditioned policies that can utilize the knowledge learned from a task to
solve similar tasks, which accelerates learning and facilitates knowledge generalization.

To implement the reward model, we build a goal extractor (Appendix A.3) that extracts goals gt from
object states zt = [z1,t, . . . , zK,t]. The goal is described by a sequence of words and symbols that
follow the triplet format, e.g., "[potato, -, need, -, fry]" where "-" serves as separator between object
and relation mentions. Although zt implicitly embeds gt with latent values, we prefer to represent gt
explicitly with a sentence for the ease of model comprehension. Given the goal gt and object states
zt, the reward model pr is defined by

pr(rt|zt, gt) = ψr[zpoolt , ψg(gt)] where zpoolt = mean_pooling[z1,t, . . . , zK,t], (4)

ψg is a transformer-based text embedding function for goals, and ψr is implemented by a MLP.

3.3 TRAINING OBJECTIVE FOR DYNAMICS MODELS

In this section, we introduce the objectives for learning the transition model and the reward model
under the object-supervised setting and the self-supervised setting.

Object-Supervised Setting. We learn the dynamics model under the supervision of memory graphs
ht that record rich information about the observed objects and their relations from the beginning of a

5



Published as a conference paper at ICLR 2022

game (Section 2.3). The Object-Supervised Evidence Lower Bound (OS-ELBo) objective is:
T∑
t=1

{
EqE
[

log pΩ(ĥt|zt)
]
−

K∑
k=1

Dkl

[
qkE(zk,t|ot, at−1, zt−1)‖pkT (zk,t|at−1, zt−1)

]}
(5)

where pΩ is the graph decoder, pT is the transition model and qkE is the observation encoder. We
now provide more details about each component and how to obtain ht. pΩ is approximated by a
re-sampling technique described in Appendix A.2. pT is a Gaussian distribution as described in
Equation 3. qkE shares a similar structure to pT (see Appendix A.5 for more details).

The memory graph ht is not a direct output from the RL environment. To perform object-supervised
training, we extract object information from ot and predict ĥt with a deterministic object extractor
fe(ot, at−1, ht−1). We learn fe during a pre-training stage by utilizing a FTWP dataset. The dataset
records the trajectories [o1, a1, . . . , ot, at] and corresponding [h1, . . . , ht] by following walkthroughs
in FTWP games. In practice, we can build such a dataset by extracting triplets (φ) from the text
observations (o1, . . . , ot) with an Open Information Extractor (OIE) (Angeli et al., 2015) and map the
captured triplets into a knowledge graph by following (Ammanabrolu & Hausknecht, 2020). After
training fe, we initialize h0 = {0}C×K×K and update by ĥt = fe(ot, at−1, ĥt−1) during training.
The detailed introduction of fe and the FTWP dataset can be found in Appendix A.4 and A.6.

To train the reward model, we sample object states zt = [z1,t, . . . , zK,t] from their belief states,
extract goal gt, and minimize a smooth L1 loss (Girshick, 2015):{

1
2β [pr(rt|zt, gt)− rt]2, if |pr(rt|zt, gt)− rt| < β,

|pr(rt|zt, gt)− rt| − 1
2β, otherwise.

(6)

Self-Supervised Setting. In order to generalize our dynamics model to common RL environments
where the predicted or ground truth memory graphs are unavailable, we develop a Self-Supervised
Evidence Lower Bound (SS-ELBo) objective that directly learns from rewards and observations:

(7)T∑
t=1

{
EqE
[

log po(ot|zt) + log pr(rt|zt, gt)
]
−

K∑
k=1

Dkl

[
qE(zk,t|ot, at−1, zt−1)‖pT (zk,t|at−1, zt−1)

]}
where pT , pr and qE are the aforementioned transition model, reward model and observation encoder.
The observation decoder po is implemented by a Sequence-to-Sequence (Seq2Seq) model (Sutskever
et al., 2014), which is trained by a teacher-forcing technique with text observations ot. This SS-EBLo
objective enables training the reward and transition model together by maximizing one objective,
which improves the training efficiency. Appendix C.1 shows an example of a predicted graph.

4 EXPERIMENTS

Environments. We divide the games in the Text-World benchmark (Côté et al., 2018) into five
subsets according to their difficulty levels. Each subset contains 100 training, 20 validation, and
20 testing games. These subsets are mutually exclusive. For the easier cooking games, the recipe
requires a single ingredient and the world is limited to a single location, whereas harder games require
an agent to navigate a map of multiple locations to collect and appropriately process up to three
ingredients. Table 4 summarizes the game statistics.

Running Settings. To efficiently collect samples from the games in the training dataset, we train
our OOTD model by implementing the Dyna-Q algorithm (Algorithm 1 in Appendix) due to the
fact that 1) Q-network supports batch input, which enables solving and gathering data from multiple
games in parallel, and 2) the Q-based algorithms provide a fair comparison of sample efficiency
with other model-free baselines. After training, we fix the parameters in dynamics models and
predict belief states and rewards to solve the games in the test dataset. During testing, we study the
options of applying different planning algorithms including Dyna-Q, MCTS, and their combination
(Dyna-Q+MCTS) that initializes MCTS with values from Q networks (Algorithm 2 in appendix).
The model hyper-parameters are tuned with the games in the validation set. (Appendix A.1).

Baselines. we compare the state-of-the-art models for solving TBGs. The baselines include Deep
Q-Network (DQN) (Narasimhan et al., 2015) and Deep Recurrent Q-Network (DRQN) (Yuan et al.,
2018). DQN selects the action based on the current observation, whereas DRQN models the history
of action and observations with an RNN. For fair comparisons, we replace their LSTM-based text
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encoders with transformers. We compare an extension of DRQN by using an episodic counting bonus
to encourage exploration, which is denoted as (DRQN+) (Yuan et al., 2018). Our next baseline is KG-
A2C (Ammanabrolu & Hausknecht, 2020), which builds a graph-based state space and applies the
Actor-Critic algorithm for learning the policy. We replace their action generator with an action selector
for comparison. The last baseline is GATA (Adhikari et al., 2020) that learns a graph-structured
representation to model the environment dynamics and select actions based on this representation.
We experiment with several options of GATA, including: 1) GATA-GTP that pre-trains the discrete
graph updater with ground-truth graphs from the FTWP dataset (Appendix A.6). Note that we apply
the same pre-training dataset for our OS-ELBo objective. 2) GATA-OG that learns a continuous
graph updater by reconstructing the text observation. 3) GATA-COC that trains the graph updater
with a contrastive observation classification objective. Both GATA-OG and GATA-COC follow the
self-supervised setting, which offers fair comparison to our SS-ELBo objective.

Table 2: Normalized testing scores and averaged improvement (↑) over DQN in six difficulty levels (0
to 5). For each method, we implement three independent runs (check random seeds in Appendix A.1).
We select the top-performing agents in validation games and report their testing scores.

Type Model 0 1 2 3 4 5 ↑

Model-
Free

Algorithm

DQN 90.0 62.5 32.0 38.3 17.7 34.6 0
DRQN 95.0 58.8 31.0 36.7 21.4 27.4 -0.8

DRQN+ 95.0 58.8 33.0 33.3 19.5 30.6 -0.8
KG-A2C 96.7 55.5 31.0 54.3 26.8 30.1 +3.2

GATA-GTP 95.0 62.5 32.0 51.7 21.8 23.5 +1.9
GATA-OG 100 66.2 36.0 58.3 14.1 45.0 +7.4

GATA-COC 96.7 62.5 33.0 46.7 25.9 33.4 +3.9

Model-
Based

Planning

OOTD learned by the Object-Supervised (OS) ELBo Objective
OS-Dyna-Q 100 62.5 42.0 58.3 21.8 48.2 +9.6
OS-MCTS 95.0 77.5 56.0 63.3 24.9 42.9 +14.1

OS-Dyna-Q + MCTS 95.0 78.8 57.0 71.7 27.7 38.1 +15.5
OOTD learned by the Self-Supervised (SS) ELBo Objective

SS-Dyna-Q 100 62.5 48.0 53.3 30.5 47.0 +11.0
SS-MCTS 100 70.0 51.0 70.0 27.3 54.4 +16.3

SS-Dyna-Q + MCTS 100 81.3 56.9 75.0 31.4 58.4 +21.3

4.1 CONTROLLING PERFORMANCE IN TBG ENVIRONMENTS

Table 2 shows the agent’s controlling performance at different difficulty levels. Equipped with the
OOTD model, our agent implements model-based planning and achieves leading performance over
the agents based on model-free algorithms. We find the SS-based OOTD models outperform the
OS-based models by scoring more rewards at 4 (out of 6) difficulty levels. Although the object
signals facilitate a better prediction of dynamics, this advantage can not be directly transferred to
controlling performance. This is commonly known as the objective-mismatch problem in model-
based RL (Lambert et al., 2020). On the other hand, SS-based models are directly optimized toward
generating a better prediction of rewards, which are important signals for controlling. The reward-
irrelevant information is filtered to derive a more compressed representation for better generalization
ability. Another important finding is that our OOTD-based agents perform better than other graph-
based agents (e.g., GATA-GTP and KG-A2C). This is because OOTD is doing model-based RL by
learning the dynamics at the object level while other graph-based techniques are model free since
they learn to extract object representations, but not to predict their dynamics.

Sample Efficiency. We empirically demonstrate the sample efficiency of our model-based agents
by comparing their training performance with other model-free agents. This experiment studies
three variations of proposed methods, including 1) OS-Dyna-Q and 2) SS-Dyna-Q that implement
the Q-Dyna algorithm and train the OOTD models with the OS-ELBo objective and the SS-ELBo
objective respectively. 3) Object-Oriented (OO)-DQN that trains the OOTD model to predict object
states, based on which we compute action values. As a model-free method, OO-DQN does not
expand the replay buffer with the samples generated by dynamics models. Figure 3 shows the training
curve for 6 difficulty levels. The learning speed of proposed model-based algorithms (OS-Dyna-Q
and SS-Dyna-Q) is generally faster than that of MF algorithms, but we observe an exception at
the games of difficulty level 5, where GATA-OG converges faster. We find it generally takes more
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samples to learn the interactions among K objects and their relations to action values. It explains
why (MF)-Dyna-Q converges slower than others. However, the object-based value function performs
better than that based on raw observation in terms of normalized scores.

Figure 3: Training Curves: Agents’ normalized scores for the games at different difficulty levels. The
plot shows mean± std normalized scores computed with three independent runs.

4.2 ABLATION STUDIES FOR OBJECT-ORIENTED DYNAMICS

To understand the importance of our OOTD design, we empirically study the options of 1) removing
the BIDAF attentions by directly applying the action and node embeddings to predict object states (i.e.,
No-Attentions Dynamics (NAt-Dyna)) and 2) removing independent transition layers by building a
single layer to predict states for all objects (i.e., Single-Layer Dynamics (SLa-Dyna)). We compare
these models with our OOTD models trained by the OS-ELBo objective (OS-OOTD) and the SS-
ELBo objective (SS-OOTD). To evaluate how well the modified model pkT ′ captures object dynamics,
we sample object states zk,t ∼ pkT ′(zk,t|at−1, zt−1) for a total of K objects, visualize these states
with the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Van der Maaten & Hinton,
2008), and quantify the dynamics prediction performance.

Object States Visualization. In this experiment, we randomly pick 20 games from the testing
games of all difficulty levels. Within each game, pkT ′ computes the states zk,1, · · · , zk,T with
randomly selected actions a0, . . . , aT−1, and t-SNE embeds zk,t into a vector of 2 dimensions.
Figure 4 visualizes the embedded vectors labelled by 10 randomly selected objects. The object states
computed by our OOTD model are distinguishable, and thus t-SNE embeds the states for the same
object close to each other. This phenomenon is not observable when we apply a single layer for
computing object states (i.e., SLa-Dyna). Another important observation is that the OOTD model
automatically learns to generate similar states for similar objects. For example, OS-OOTD generates
similar states for the object of ingredients (e.g., parsley, apple, carrot, and potato marked by the dark
frame). A similar phenomenon, although less obvious, can be observed for SS-OOTD. However, such
a shrinkage effect disappears in NAt-Dyna, which explains the importance of bidirectional attentions.

Figure 4: Scatter plots for T-SNE-embedded object states. From left to right, the states are sampled
from SLa-Dyna, NAt-Dyna, OS-OOTD and SS-OOTD (from left to right).

Probing Experiment. This experiment studies how well our OOTD models can capture useful
information from the TBG environments. We map the sampled object states z1,t, . . . , zK,t to memory
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graphs ĥt and rewards r̂t with the additional graph decoder p′G and reward model p′r. The performance
of the dynamics models is quantified by whether ĥt and r̂t can match the ground-truth h∗t and r∗t
in the FTWP dataset (Appendix A.6). During sampling, the input actions a1, . . . , aT follow the
recorded trajectories in FTWP. The ground-truth rewards in FTWP games is either one or zero, and
we perform an entry-level evaluation (e.g., ht[i, j, c]) on the adjacency matrix of a predicted graph.
It allows us to evaluate whether the real rewards and triplets are captured with F1 scores. For a fair
comparison, the games in the FTWP dataset are divided into training (80%), validation (10%) and
testing (10%) sets, based on which we first freeze the parameters in the dynamics models and then
update the added p′G and p′r with data in training games.

Table 3: Graph-generation (G-gen),
graph updating (G-upt) and rewards
prediction (r-pred) performance.

G-gen G-upt r-pred
Random 93.5 57.4 49.5

Real 99.2 95.9 94.0
Ablated Dynamics models

SLa-Dyna 84.4 75.4 85.5
NAt-Dyna 90.9 75.2 88.7

OOTD models
OS-OOTD 99.0 83.8 92.5
SS-OOTD 77.2 65.3 94.2

Table 3 shows the testing performance. We study both 1)
the graph-Generation performance which measures the accu-
racy of generating all the candidate triplets in a graph and 2)
the graph-Updating performance which evaluates only the
triplets that have been updated at the current step t. We
add a Real and a Random baseline that feed the ground-
truth graph h∗t and a randomly generated graph hRMt into
the graph encoder of transition models. They study the prob-
ing performance when ground-truth graphs are known and
when the posterior collapses for the transition model (so
pkT ′(zk,t|at−1, zt−1) = pkT ′(zk,t)). The results show that
OS-OOTD achieves a better graph prediction performance by
applying the object-supervised objectives (OS-ELBo), but SS-
OOTD has higher reward prediction accuracy, since SS-ELBo includes an end-to-end training to
predict future rewards, which filters the reward-irrelevant object information. Another observation is
that removing independent layers and directional attentions significantly degrade the graph prediction
performance. It demonstrates that they are important components of our OOTD model.

5 RELATED WORK

DRL Agent for Text-Based Games (TBGs). TBGs (e.g., Textworld (Côté et al., 2018) and inter-
active fictional games (Hausknecht et al., 2020)) are interactive simulations with text observations
and actions. To solve TBGs, previous DRL agents typically applied advanced neural models for
representing the state and action sentences, including recurrent models (Narasimhan et al., 2015; Jain
et al., 2020; Zelinka, 2018; Madotto et al., 2020; Adolphs & Hofmann, 2020), Transformers (Adhikari
et al., 2020; Ammanabrolu et al., 2020; Urbanek et al., 2019), relevance networks (He et al., 2016),
and convolutional neural networks (Yin & May, 2019; Zahavy et al., 2018; Yin & May, 2019). Since
states in the TBG environments are partially observable, many previous studies have formulated
TBGs as POMDPs and modelled the history of observations with a Deep Recurrent Q-Network
(DRQN) (Yuan et al., 2018) or a knowledge graph (Hausknecht et al., 2019; Ammanabrolu & Riedl,
2019; Ammanabrolu & Hausknecht, 2020; Adhikari et al., 2020; Ammanabrolu et al., 2020). Previous
works are commonly based on model-free Q learning while we explore model-based planning.

Object Oriented Reinforcement Learning. Diuk et al. (2008) proposed modelling the transition
and reward models at the object level. Previous work (Mohan & Laird, 2011; Joshi et al., 2012;
da Silva & Costa, 2018; Marom & Rosman, 2018; da Silva et al., 2019) explored training DRL agents
with the object-level features. However, object features are not commonly available from the RL
environments. Recent works have extracted object representations from states with optical flow (Goel
et al., 2018), variational models (Burgess et al., 2019) and structured convolutional layers (Kipf et al.,
2020; Finn et al., 2016; Zhu et al., 2018; 2020). Previous works commonly studied image-based fully
observable environments whereas we explore text-based partially observable environments.

6 CONCLUSION

We proposed an OOTD model that enables planning in text-based environments. The OOTD model
learned a graph representation for capturing object dynamics and predicted the belief of object
states with independent transition layers. Empirical results demonstrated that OOTD-based agents
outperformed model-free baselines in terms of controlling performance and sample efficiency. We
then provided an ablation study to show the importance of OOTD components. A promising future
direction will be expanding our OOTD model to parser-based games where the agent must generate
the commands character by character without knowing candidate actions.
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that might potentially cause a bias toward some minorities or underrepresented groups. How to
eliminate such bias will be an important direction of future research.
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testing datasets as well as the running settings based on the constructed datasets. We report the
hyper-parameters for training our OOTD model and the seeds for independent runs in Appendix A.1.
The computing resources and running time are discussed in Appendix A.7.
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A MODEL IMPLEMENTATION DETAILS AND DATASETS

A.1 HYPER-PARAMETERS

We report the key hyper-parameters that have been applied for model implementation. We set the
number of candidate objects K to 99 and the number of candidate relations to 10 by following the
settings in (Adhikari et al., 2020), which show that the agent can properly solve a game by modelling
these objects and relations. The learning rate of policy training and dynamics model training is
set to 0.0001. The discount factor γ is set to 0.9. The size of the hidden layers and the size of
z in our OOTD model are set to 32. The transition layers of different objects are parameterized
independently, so the neural network predicts 32× 99 = 3, 168 values at each step during dynamics
modelling. The sizes of word embedding and node embedding are set to 300 and 100 respectively.
These numbers are determined experimentally, which could provide promising performance with a
reasonable computational resource. The full list of hyper-parameters is recorded in the .yaml file in
our submitted code. In our experiment, the random seeds we select are 123, 321, and 666.

A.2 RESAMPLING FOR COMPUTING THE GRAPH LIKELIHOOD

The graph likelihood pΩ(ht|zt) computes the probability of generating ht with a graph decoder. As
it is discussed in Section 3.1, our graph decoder is implemented as a scoring function for entry-level
prediction. However, ht is a graph with significant sparsity, for example, the corresponding adjacency
matrix assigns positive labels (i.e., 1) for an average of 97.6 out of all 98,010 entries. As a result,
directly optimizing toward h∗t creates a large negative bias. In other words, the decoder can achieve a
satisfying accuracy by labelling all the entries with 0s, which does not capture any object information.
To solve this problem, we implement a re-sampling technique that extracts all the positive samples
(the entries labelled with one) from h∗t and sample an equivalent number of negative samples from
the rest of the entries. These positive and negative samples are used to estimate the graph likelihood.

A.3 GOAL EXTRACTOR

At a time step t, the goal extractor generates the goal gt from the object states zt by optionally
conditioning on the previous goal gt−1 and observed text ot. The goal can be represented by a
sequence of words and symbols that follows the triplet format. To generate this goal, we introduce
two kinds of extractors that are built for the OOTD learned by the OS-ELBo and the SS-ELBo
objectives.

Goal Extractor with the OS-ELBo objective. Under this setting, the predicted memory graph ĥOSt
captures the sparsity of object observations and forms a direct prediction of the ground truth graph ĥ∗t
(check Figure 7). We can build a rule-based goal extractor that maps zt to ĥOSt and checks whether
hOSt captures certain relations (e.g., ’need’) between two objects. If there is such a relation, we
directly output the sentence of corresponding triplets by following a format "[ object 1 $ relation $
object 2 ]". Such a simple extractor can generalize well to training and testing games if ĥOSt manages
to capture correct relations.

Goal Extractor with the SS-ELBo objective. The memory graph ĥOSt learned by the SS-ELBo
objective captures a latent representation of ĥ∗t . This latent representation is not directly interpretable,
and thus we build a word-by-word sequence generator whose output is the goal to be predicted (gt)
and inputs are zt, gt−1 and ot. To train this model, we manually build a goal learning dataset that
collects pairs of model input/output from the training games. During testing, we predict the goal after
interacting with the environment and update the current goal if a valid goal sentence is generated.

A.4 OBJECT EXTRACTOR

The object extractor fe(ot, at−1, ht−1) predicts the memory graph ht by conditioning on current
observations ot and action at. Figure 5 shows the architecture of fe. It shares a similar structure to
our OOTD model, but the key differences are 1) fe is a deterministic model which only maximizes
the likelihood of predicting h∗t during training. 2) fe captures object information from ot, whereas
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ot is not available for our OOTD model, and it is the motivation why OOTD predicts the belief
(distribution) of states while fe directly generates the deterministic states.
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Figure 5: The object extractor.

A.5 OBSERVATION ENCODER.

The observation encoder qE is defined by:

νak,t−1 =
∑

j
bak,jψ

a(aj,t−1) where bak = softmax(Bae
k,:) ∈ [0, 1]J ,

νet−1 =
∑

k
bekek,t−1 where be = softmax(maxcol(B

ae)) ∈ [0, 1]K ,

νok,t−1 =
∑

j
bok,jψ

o(aj,t−1) where bok = softmax(Boe
k,:) ∈ [0, 1]J

ν′,et−1 =
∑

k
boe,ek ek,t−1 where boe,e = softmax(maxcol(B

oe)) ∈ [0, 1]K (8)

qkE(zk,t|ot,at−1, zk,t−1) = N (µqk,t,σ
q
k,t) where [µqk,t,σ

q
k,t] = ψqk([νok,t−1,ν

′,e
t−1,ν

a
k,t−1,ν

e
t−1, ek,t−1])

ψo is a transformer-based text embedding function (Vaswani et al., 2017) for observations, and ψqk is
implemented by a MLP. The transition layers ψq1, . . . , ψ

q
K are parameterized independently.

Figure 6 shows the structure of an observation encoder qkE , which shares a similar structure to the
transition (OOTD) model (Figure 3), but it includes an additional BIDAF network to learn an attention
matrixBoe, where boek,i measures the similarity between the representation of the kth object and the
ith word in the current observation ot. It predicts the memory graph ht from zqt with a ComplEx
graph decoder (Section 3.1). It predicts the current observation ôt and reward rt with a sequence
decoder and the reward function (Section 3.2).
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Figure 6: The observation encoder.

A.6 FTWP DATASET

The FTWP dataset is a public dataset that supports pre-training the dynamics model 2. Trischler et al.
(2019) provided the First TextWorld Problems (FTWP) dataset. The dataset consists of TextWorld

2The dataset can be downloaded at https://aka.ms/ftwp/dataset.zip
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games in a cooking theme across a wide range of difficulty levels. For each game, the expert trajectory
and the memory graph ht at each time step are recorded. The original dataset has only 10 games for
each difficulty level. This is insufficient for dynamics model pre-training, so Adhikari et al. (2020)
further expanded this dataset by adding more games into this dataset by utilizing the logic in the
Textworld game engine. The specific generation rules are described in (Adhikari et al., 2020). After
expansion, the dataset contains 4440 games for training, 222 games for validation, 514 games for
testing. To ensure fairness when using this dataset, we confirm that there is no overlap between the
FTWP and the games we used to train and evaluate our planning algorithms.

A.7 COMPUTATIONAL RESOURCE AND RUNNING TIME

We run the experiment on a cluster operated by the Slurm workload manager. The cluster has multiple
kinds of GPUs, including Tesla T4 with 16 GB memory, Tesla P100 with 12 GB memory, and RTX
6000 with 24 GB memory. We used machines with 24 GB of memory for pre-training the object
extractor and 64 GB for training the OOTD model. The number of running nodes is 1, and the number
of CPUs requested per task is 32. Given the aforementioned resources, pre-training can be completed
within 4 days (96 hours), and training the dynamics model takes 6 days (144 hours).

Table 4: Game statistics at different difficulty levels.

Level Recipe Size #Locations Max Scores Need Cut Need Cook #Action Candidates #Objects
0 1 1 3 7 7 10.5 15.4
1 1 1 4 X 7 11.5 17.1
2 1 1 5 X X 11.8 17.5
3 1 9 3 7 7 7.2 34.1
4 3 6 11 X X 28.4 33.4
5 Mixture of Levels[1,2,3,4}
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B ALGORITHMS

Algorithm 1: Dyna-Q Training
Input :Transition Model: pT (zt+1|at, zt),

Object Encoder: qE(zt+1|ot+1, at, zt),
Reward Model: pr(rt+1|zt+1, at, gt),
Object Extraction function: fe(ht, at, ot+1),
Graph Decoder: pΩ(ht|zt),
Training game ids I.

Initialize Replay Buffers D;
while not converged do

Initialize belief state z0 =random numbers, action a0 ="restart", goal g0 ="<pad>" and
memory graph h0 = 0C×K×K ;

Randomly pick a game id ∈ I, set t = 0;
while not end do

/* Q learning with environment */
ot+1, rt+1 ← env(at, id);
Extract object information ht+1 = f(at, zt, ot+1);
Update object belief zt+1 ∼ qE(zt+1|ot+1, at, zt);
Extract goal: gt+1 = ExtactGoal(zt+1, ot+1, gt);
Action selection: ât+1 = EpsilonGreedy(Q(zt+1, at+1, gt+1));
Expand the replay buffer: D ∪ {zt, ht, at, gt, rt+1, zt+1, ht+1, gt+1};
t = t+ 1 and end = CheckEnd(env)

end
for update step c=1,...,C do

/* Model fitting */
Sample a transition: T = {zt, ht, at, gt, rt+1, zt+1, ht+1, gt+1} from the dataset D;
Update the reward model to minimize the L1Smooth loss (Equation 6) with T ;
Update the transition model to minimize the OS-ELBO (Equation 5) objective or the

SS-ELBO objective (Equation 7) with T ;
Update the Q function to minimize the TD Loss (Equation 1) with T ;
for explore step b=1,...,B do

/* Exploration with the transition and reward models */
Randomly select a′τ ∈ A ;
z′τ+1 ∼ pT (z′τ+1|a′τ , zτ ), r′τ+1 ∼ pr(r′t+1|z′τ+1, a

′
τ , gτ );

Update the transition T ′ = {zt, gt, a′t, r′t+1, z
′
t+1, gt+1};

Update the Q function to minimize the TD Loss (Equation 1) with T ;
end

end
end

18



Published as a conference paper at ICLR 2022

Algorithm 2: MCTS Testing
Input :Transition Model: pT (zt+1|at, zt),

Object Encoder: qE(zt+1|ot+1, at, zt),
Reward Model: pr(rt+1|zt+1, at, gt),
Action Value function: Q(zt, at, gt),
Testing game ids I

Initialize belief state z0 =random numbers, action a0 ="restart", and goal g0 ="<pad>";
Initialize reward bufferR;
for game id id ∈ I do

Initialize root N0 = InitTree(Q(zt, at, gt)), set t = 0 and R = 0;
while not end do

ot+1, rt+1 ← env(at, id) and R = R+ rt+1;
Update object belief zt+1 ∼ qE(zt+1|ot+1, at, zt);
Extract goal: gt+1 = ExtactGoal(zt+1, ot+1, gt);
Select action: ât+1 = MCTS_Simulations(Nt, zt+1, gt+1, pT (·), pr(·), Q(·));
Move the search node: Nt+1 = Move(Nt, ât+1);
Expand t = t+ 1 and end = CheckEnd(env)

end
Buffer total rewardsR = R∪R

end
output :Reward bufferR

C COMPLEMENTARY RESULTS

C.1 GRAPH VISUALIZATION

Graph Visualization. Figure 7 illustrates examples of the ground-truth memory graph h∗t and the
graphs learned by the OS-ELBo (hOSt ) and SS-ELBo (hSSt ) objectives. Since the space of adjacency
matrices is large (K ×K × C) while the observed object information is limited, h∗t can be represent
by a sparse matrix. Supervised by predicted graphs ĥt, OS-ELBo captures the sparsity, and hOSt
is a direct approximation to h∗t . However, graph information are unavailable for the SS-ELBo
objective, so hOSt forms a dense latent representation of h∗t . Similar phenomenon can be observed in
GATA (Adhikari et al., 2020). We study how well this latent representation and the corresponding
object states can represent the object dynamics in Section 4.2.

Figure 7: Adjacency tensors corresponding the "is" relation in memory graphs ht. From left to right:
1) the ground-truth graph, and the graph learned by 2) the OS-ELBo objective, 3) the SS-ELBo
objective (Section 3.3), and 4) GATA (a graph-based dynamics model baseline) (Adhikari et al.,
2020).

C.2 PLANNING EFFICIENCY

We compare the efficiency of OOTD-based planning algorithms (including Dyna-Q, MCTS, and Dyna-
Q+MCTS) by studying which method can gather more rewards with a limited number of selected
actions. Figure 8 shows results. Among the planning algorithms, Dyna-Q+MCTS significantly
outperforms others. It is because the Q network provides prior knowledge over the preference of
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actions, based on which MCTS implements Monte-Carlo rollouts to generate and evaluate the belief
states of objects. Together, they yield a more accurate look ahead of future rewards.

Figure 8: Planning Curve. The agent are based on the dynamics model with the OS-ELBO objective
(Upper) and the SS-ELBo objective (Lower). The plot showsmean±std normalized scores computed
with three independent runs.
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