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Abstract

Stochastic gradient descent (SGD) and adaptive gradient methods, such as Adam and
RMSProp, have been widely used in training deep neural networks. We empirically show
that while the difference between the standard generalization performance of models trained
using these methods is small, those trained using SGD exhibit far greater robustness un-
der input perturbations. Notably, our investigation demonstrates the presence of irrele-
vant frequencies in natural datasets, where alterations do not affect models’ generalization
performance. However, models trained with adaptive methods show sensitivity to these
changes, suggesting that their use of irrelevant frequencies can lead to solutions sensitive
to perturbations. To better understand this difference, we study the learning dynamics
of gradient descent (GD) and sign gradient descent (signGD) on a synthetic dataset that
mirrors natural signals. With a three-dimensional input space, the models optimized with
GD and signGD have standard risks close to zero but vary in their adversarial risks. Our
result shows that linear models’ robustness to ℓ2-norm bounded changes is inversely pro-
portional to the model parameters’ weight norm: a smaller weight norm implies better
robustness. In the context of deep learning, our experiments show that SGD-trained neural
networks have smaller Lipschitz constants, explaining the better robustness to input per-
turbations than those trained with adaptive gradient methods. Our source code is available
at https://github.com/averyma/opt-robust.

1 Introduction

Adaptive gradient methods, such as Adam (Kingma & Ba, 2015) and RMSProp (Hinton et al., 2012), are
a family of popular techniques to optimize machine learning (ML) algorithms. They are an extension of
the traditional gradient descent method, which uses the gradient of a differentiable objective function to
update the model’s parameters in the direction that improves the objective. To speed up the optimization
procedure, the adaptive gradient methods introduce a coordinate-wise learning rate to adjust the update for
each parameter based on its individual gradient. Previous empirical work investigates the difference in the
standard generalization between models trained using SGD and adaptive gradient methods (Wilson et al.,
2017; Agarwal et al., 2020), while recent efforts have focused on understanding the implicit bias of SGD
(Gunasekar et al., 2017; Soudry et al., 2018; Lyu & Li, 2020) and adaptive gradient algorithms (Qian &
Qian, 2019; Wang et al., 2021).
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Figure 1: Comparison between models trained using SGD, Adam, and RMSProp across seven
benchmark datasets. Each colored triplet denotes models on the same dataset. Models trained by different
algorithms have similar standard generalization performance, but there is a distinct robustness difference
as measured by the test data accuracy under Gaussian noise, ℓ2 and ℓ∞ bounded adversarial perturbations
(Croce & Hein, 2020). Results are averaged over three independent model initializations and trainings.

Nevertheless, our result shows that in practice such a gap in the standard generalization is relatively small,
in contrast to the difference between the robustness of models trained using those algorithms. While more
ML-based systems are deployed in the real world, the models’ robustness, their ability to maintain their
performance when faced with noisy or corrupted inputs, has become an important criterion. There is a large
volume of literature on developing specialized methods to improve the robustness of neural networks (Silva
& Najafirad, 2020), yet practitioners still simply use standard methods to train their models. In fact, a
recent survey shows that only 3 of the 28 organizations have developed their ML-based systems with the
improvement in robustness in mind (Kumar et al., 2020). Therefore, this motivates us to understand the
effect of optimizers on the robustness of models obtained in the standard training regime. In particular,
we focus on models trained using SGD and adaptive gradient methods. Note that our primary focus lies in
understanding the robustness difference, and robustification falls outside the scope of our work.

1.1 The Robustness Difference between Models Trained by Different Algorithms

As a first step, we compare how models, trained with SGD, Adam, and RMSProp, differ in their standard
generalization and robustness on seven benchmark datasets (LeCun, 1998; Xiao et al., 2017; Krizhevsky &
Hinton, 2009; Netzer et al., 2011; Howard; Fei-Fei et al., 2004). In our experiments, we evaluate standard
generalization using the accuracy of the trained classifier on the original test dataset. To measure robustness,
we consider the classification accuracy on the test dataset perturbed by Gaussian noise, ℓ2 and ℓ∞ bounded
adversarial perturbations (Croce & Hein, 2020). We follow the default Pytorch configuration to train all
the models and sweep through a wide range of learning rates. The final model is selected with the highest
validation accuracy. Models are trained in a vanilla setting in which data augmentations are limited to
random flipping. Additional discussions on batch normalization (Ioffe & Szegedy, 2015), data augmentation,
optimization schedules, and network designs are detailed in Appendix B. Appendix C presents comprehensive
results from the experiment depicted in Figure 1, including the approach for selecting perturbations for each
dataset. While our primary experiments are centered around models based on convolutional neural networks,
within the computer vision domain, we also extend our analysis to include results from experiments on Vision
Transformers (Dosovitskiy et al., 2021) and an audio dataset (Warden, 2018). The results of these additional
experiments are consistent with the findings presented in this section and are detailed in Appendix C.
Additionally, visualizations of the perturbations can be found in Appendix G.

Figure 1 compares the models trained with SGD and the adaptive gradient methods, pointing to two impor-
tant observations. First, the relatively small vertical differences among the three models, on a given dataset,
show that the models have similar standard generalization performance despite being trained by different al-
gorithms. On the other hand, we observe, under all three types of perturbations, a large horizontal span with
SGD always positioned on the far right side among the three. This indicates that models trained by SGD
significantly outperform models trained by the other two in terms of their robustness against perturbations.
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1.2 Contributions

Previous optimization work often studies how the structure of the dataset affects the dynamics of learning.
For example, some focus on a dataset with different feature strengths (Amari et al., 2021; Pezeshki et al.,
2021), while others assume a linearly separable dataset (Wilson et al., 2017; Gunasekar et al., 2017; Soudry
et al., 2018). In our work, we investigate how the frequency characteristics of the dataset impact the
robustness of models trained by SGD and adaptive gradient methods. We make the following contributions:

• We demonstrate that natural datasets contain irrelevant frequencies, which, when removed, have
negligible effects on standard generalization performance (Sec. 3.1).

• We also observe that neural networks trained by different algorithms can have very different robustness
against perturbations in the direction of the irrelevant frequencies (Sec. 3.2).

• Those observations lead to our claim that models only need to learn how to correctly use relevant
information in the data to optimize the training objective, and because their use of the irrelevant
information is under-constrained, it can lead to solutions sensitive to perturbations (Sec. 3).

• Our analysis of linear models on least square regression shows that linear models’ robustness to ℓ2-
norm bounded changes is inversely proportional to the model parameters’ weight norm: a smaller
weight norm implies better robustness (Sec. 4.1).

• We study the learning dynamics of GD and signGD, a memory-free version of Adam and RMSProp,
with linear models. With a three-dimensional input space, the analysis shows that models optimized
with GD exhibit a smaller weight norm compared to their signGD counterparts (Sec. 4.2).

• To generalize this result in the deep learning setting, we demonstrate that neural networks trained
by Adam and RMSProp often have a larger Lispchitz constant and, consequently, are more prone to
perturbations (Sec. 5).

Specifically, in the analysis of linear models, we design a least square regression task using a synthetic dataset
whose frequency representation mimics the natural datasets. This setting allows us to i) mathematically
define the standard and adversarial population risks, ii) design a learning task that has multiple optima for
the standard population risk, each with a different adversarial risk, and iii) theoretically analyze the learning
dynamics of various algorithms.

2 Background

In this section, we briefly review the essential background to help understand our work. Specifically, we
discuss formulations of adaptive gradient methods, previous work on the adversarial robustness of the model,
and methods of representing signals in the frequency domain.

2.1 Optimizations with Adaptive Gradient Algorithms

Consider the empirical risk minimization problem with an objective of the form L(w) = 1
N

∑N
n=1 ℓ(Xn, Yn; w),

where w ∈ Rd is a vector of weights of a model, {(Xn, Yn)}N
n=1 is the training dataset and ℓ(x, y; w) is the

point-wise loss quantifying the performance of the model on data point (x, y). A common approach in
training machine learning models is to reduce the loss via SGD which iteratively updates the model based
on a mini-batch of data points drawn uniformly and independently from the training set:

g(w) = 1
|B|

∑
n∈B
∇wℓ(Xn, Yn; w), (1)

where B ⊂ {1, ..., N} denotes the minibatch and has a size of |B| ≪ N . The update rule of SGD is
w(t + 1) = w(t)− η(t)g(w(t)), where η(t) ∈ R+ denotes the learning rate.1

1From this point forward, subscripts denote vector/matrix coordinates, and numbers in parentheses denote update iterations
unless otherwise specified.
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A family of adaptive gradient methods has been used to accelerate training by updating the model parameters
based on a coordinate-wise scaling of the original gradients. Methods such as Adam and RMSprop have
demonstrated significant acceleration in training deep neural networks (Wilson et al., 2017). Many adaptive
gradient methods can be written as

m(t + 1) = β1g(w(t)) + (1− β1)m(t)
v(t + 1) = β2g(w(t))2 + (1− β2)v(t)

w(t + 1) = w(t)− η(t) m(t + 1)√
v(t + 1) + ϵ

, (2)

where g(w(t)) is the stochastic estimate of gradient used by SGD (1), m and v are the first and second-
order memory terms with their strength specified by β1 and β2, and ϵ is a small constant used to avoid
division-by-zero. Such a general form has been widely used to study the dynamics of adaptive gradient
algorithm (Wilson et al., 2017; da Silva & Gazeau, 2020; Ma et al., 2022b). For example, Adam corresponds
to β1, β2 ∈ (0, 1), and RMSProp is recovered when β1 = 1 and β2 ∈ (0, 1). Notice that such updates rely
on the history of past gradients, and this makes the precise understanding and analysis of adaptive gradient
methods more challenging (Duchi et al., 2011). Recent work analyzes the learning dynamics of adaptive
gradient methods by separately considering the direction and the magnitude of the update (Kingma & Ba,
2015; Balles & Hennig, 2018; Ma et al., 2022b). As a simple example, to demonstrate how adaptive gradient
methods can potentially accelerate learning compared to the vanilla SGD, consider a memory-free version of
(2) with β1 = β2 = 1 and ϵ = 0. It is easy to see that the update rule in (2) becomes sign gradient descent:

w(t + 1) = w(t)− η(t) sign(g(w(t)))
= w(t)− η⃗(t)⊙ g(w(t)), (3)

where ⊙ denotes Hadamard product, η⃗(t) ∈ Rd is a coordinate-wise learning rate based on the absolute value
of the weight, i.e., η⃗(t) = η(t)

|g(w(t))| . Therefore, η⃗(t) accounts for the magnitude of the weight and a larger
learning rate is used for parameters with smaller gradients.

In general, gradient-sign-based optimization methods are not successful in training deep learning models
(Riedmiller & Braun, 1993; Ma et al., 2022b), nevertheless, methods such as signGD can shed light on the
learning dynamics of adaptive gradient methods (Karimi et al., 2016; Balles & Hennig, 2018; Moulay et al.,
2019). For example, recent work by Ma et al. (2022b) studies the behavior of adaptive gradient algorithms
in the continuous-time limit. They demonstrate that under a fixed β1 and β2, the memory effect for both
Adam and RMSprop diminishes and the continuous-time limit of the two algorithms follows the dynamics
of signGD flow. In this work, the deep learning models on which we observe the robustness difference are
trained using Adam and RMSProp, with the exception of Sec. 4, where we focus on signGD, a memory-free
version of Adam and RMSProp, and gradient descent to help us understand the robustness gap between
models trained using SGD and adaptive gradient methods in a simple setting.

2.2 Robustness of ML Models

An important assumption of most modern ML models is that samples from the training and testing dataset
are independent and identically distributed (i.i.d.); however, samples collected in the real world rarely come
from an identical distribution as the training data, as they are often subject to noise. It is known that
ML models can achieve impressive success on the original testing dataset, but exhibit a sharp drop in
performance under perturbations (Szegedy et al., 2014). Such an observation has posed concerns about the
potential vulnerabilities for real-world ML applications such as healthcare (Qayyum et al., 2020), autonomous
driving (Deng et al., 2020) and audio systems (Li et al., 2020). Models’ robustness performance has become an
important secondary metric in the empirical evaluation of new training methods, such as data augmentations
(Zhang et al., 2018; Hendrycks et al., 2020; Verma et al., 2019; Ma et al., 2022a) and robust optimization
techniques (Zhai et al., 2021). Generally, the robustness property of models is assessed by examining the
model performance under multiple perturbations (Ding et al., 2020; Shen et al., 2021; Kuang et al., 2018). A
wide variety of approaches have been proposed to improve the robustness of the model through regularizations
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(Goodfellow et al., 2015; Simon-Gabriel et al., 2019; Wen et al., 2020; Ma et al., 2020; Foret et al., 2021;
Wei et al., 2023), data augmentation (Madry et al., 2018; Rebuffi et al., 2021; Gowal et al., 2021; Ma et al.,
2022a), and novel network architectures (Wu et al., 2021; Ma et al., 2021; Huang et al., 2021). However,
most industry practitioners are yet to come to terms with improving security in developing ML systems
(Kumar et al., 2020). Since SGD, Adam, and RMSProp have been the go-to optimizer in both academic
and industrial settings, this motivates us to understand the robustness of models trained by them and built
on the standard training pipelines, i.e., minimizing some losses on the original training set.

2.3 Frequency Representation of Signals

Natural signals are highly structured (Schwartz & Simoncelli, 2001). They often consist of statistically signif-
icant (or insignificant) patterns with a large amount of predictability (or redundancy). Such a phenomenon
has been observed in both natural images (Ruderman, 1994; Simoncelli, 1997; Huang & Mumford, 1999)
and natural audio signals (McAulay & Quatieri, 1986; Attias & Schreiner, 1996; Turner, 2010). To under-
stand the structure of signals and identify patterns from them, one technique is to decompose the signal
into multiples of “harmonics” or “overtones”: a superposition of periodic waves with varying amplitudes and
in varying phases. For example, Fourier (1822) first proposed to analyze complicated heat equations using
well-understood trigonometric functions, a method now called the Fourier transformation. This new repre-
sentation allows us to precisely study the structure and the magnitude of any repeating patterns presented in
the original waveform. For the understanding of digital signals, such a process is called discrete-time signal
processing (Oppenheim et al., 2001).

Many discrete harmonic transformations exist, such as the discrete Fourier transform, the discrete co-
sine transform (DCT) (Ahmed et al., 1974) and the wavelet transform (Mallat, 1999). The analysis in
this work utilizes the type-II DCT, but other techniques can be applied as well and we expect simi-
lar results. Concretely, consider a d-dimensional signal x ∈ Rd in the spatial domain. The same sig-
nal can be alternatively represented as a discrete sum of amplitudes multiplied by its cosine harmonics:
x̃k =

∑d−1
j=0 xj cos

[
π
d

(
j + 1

2
)

k
]

for k = 0, ..., d − 1, where the transformed signal x̃ has a frequency-domain
representation.2 Because DCT is linear, it can be carried out using a matrix operation, i.e., x̃ = Cx, where
C is a d× d DCT transformation matrix with values specified by

C
(d)
kj =

√
αk

d
cos

[
π

d

(
j + 1

2

)
k

]
, (4)

where α0 = 1 and αk = 2 for k > 0. In particular, x̃ can be written as a matrix-vector product between the
transformation matrix C and the column vector x:

x̃0
x̃1
...

x̃d−1

 =



√
1
d

√
1
d · · ·

√
1
d√

2
d cos π(2(0)+1)(1)

2d

√
2
d cos π(2(1)+1)(1)

2d · · ·
√

2
d cos π(2(d−1)+1)(1)

2d

...
...

...
...√

2
d cos π(2(0)+1)(d−1)

2d

√
2
d cos π(2(1)+1)(d−1)

2d · · ·
√

2
d cos π(2(d−1)+1)(d−1)

2d




x0
x1
...

xd−1

 . (5)

Notice that C is a real orthogonal matrix whose rows consists of periodic cosine bases with increasing fre-
quencies. Therefore, the absolute value of x̃ at a particular dimension indicates the magnitudes of the
corresponding basis function, and a higher dimension in x̃ means the basis function is of higher frequency.
Another important property of DCT is its invertibility. That is, signals in the frequency domain can be con-
verted back to the spatial-temporal domain via the inverse DCT (iDCT): x = C−1x̃ = C⊤x̃. In the example
above, we discussed one-dimensional DCT which is applied to vectors and is used in the linear analysis in
Sec. 4. Transformations on images require two-dimensional DCT and can be done using x̃ = CxC⊤, where
x, x̃ ∈ Rd×d, and C is defined in (4); and the inverse two-dimensional DCT is x = C⊤x̃C. For more details
on two-dimensional DCT, we refer the reader to Pennebaker & Mitchell (1992).

Previous work analyzes the sensitivity of neural network classifiers by examining the frequency characteristics
of various types of perturbations, with an emphasis on understanding how data augmentation affects the

2Indices range from 0 to d − 1, as zero-frequency is commonly used to refer to a signal with a constant everywhere.
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robustness of the model (Yin et al., 2019). In our work, the frequency interpretation of signals is an integral
part of understanding the robustness difference between models trained by SGD and adaptive gradient
methods. This perspective allows us to study the structure of complex signals using well-understood periodic
basis functions such as cosines and understand the energy distribution of signals by examining the amplitude
of the basis function. In particular, the energy of a discrete signal x is defined as E(x) =

∑d−1
i=0 |xi|2, and

by Parseval’s theorem, is equivalent to the sum of squared amplitudes across all the bases, i.e., E(x) =
E(x̃) =

∑d−1
i=0 |x̃i|2. Natural images are primarily made of low-frequency signals3: a high concentration

of energy in the low-frequency harmonics renders the amplitude of the higher-frequency harmonics almost
negligible (Tolhurst et al., 1992; Schaaf & Hateren, 1996), as shown in Figure 8 in Appendix G. Moreover,
we show in Sec. 3.1 that there exist frequencies in natural datasets, which if removed from the training data,
do not affect the standard generalization performance of the model. Based on this observation, in Sec. 4, we
construct a synthetic dataset that mimics the characteristics of natural signals, and it allows us to study the
learning dynamics of various optimization algorithms in a controlled setting.

3 A Claim on How Models Use Irrelevant Frequencies

Why do models trained by different optimization algorithms behave similarly in the standard setting where
the training and the test inputs are i.i.d., while they perform drastically differently when faced with noisy or
corrupted data? To answer this question, we first observe that there is irrelevant information in the natural
dataset (Observation I), and attenuating them from the training input has negligible effects on the standard
generalization of the model. This leads to our claim:
Claim 3.1. To optimize the standard training objective, models only need to learn how to correctly use rele-
vant information in the data. Their use of irrelevant information in the data, however, is under-constrained
and can lead to solutions sensitive to perturbations.

Because of this, by targeting the perturbations toward the subset of the signal that contains irrelevant
information, we notice that models trained by different algorithms exhibit very different performance changes
(Observation II).

3.1 Observation I: Irrelevant Frequencies in Natural Signals

Previous work demonstrated that the magnitude of the frequency components in natural images decreases
as the frequency increases, and this decrease follows a 1

f2 relationship (Ruderman, 1994; Wainwright &
Simoncelli, 1999). In Figure 8 of Appendix G, we make the observation on several common vision datasets
that the distribution of spectral energy heavily concentrates at the low end of the frequency spectrum and
decays quickly towards higher frequencies. The spectral sensitivity of the human eyes is limited (Gross,
2005), so patterns with low magnitudes and high frequencies are not important from the perspective of
human observers, as they appear to us as nearly invisible and unintuitive information in the scene (Schwartz
& Simoncelli, 2001; Schwartz, 2004). For machines, image-processing methods have long exploited the fact
that most of the content-defining information in natural images is represented in low frequencies, and the
high-frequency signal is redundant, irrelevant, and is often associated with noise (Wallace, 1991; Guo et al.,
2020; Sharma et al., 2019).

Similarly, the notion of irrelevant frequencies also exists when training a neural network classifier. One
way to illustrate this is by taking a supervised learning task, removing the irrelevant information from the
training input, and then assessing the model’s performance using the original test data. We observe that
when modifying the training dataset by removing subsets of the signal with low spectral energy (Figure 2a)
or high frequencies (Figure 2b), there is a negligible effect on models’ classification accuracy on the original
test data. In Appendix D, we explain how images are modified in detail, and visualizations of the modified
images are included in Appendix G. In both settings after reducing more than half of the DCT basis vectors
to zeroes in the training data, the model’s generalization ability remains strong. This observation suggests
there is a considerable amount of irrelevant information in naturally occurring data from the perspective of

3We will always use the term “high” or “low” frequency on a relative scale.

6



Published in Transactions on Machine Learning Research (11/2023)

0 10 30 50 70 90
p: percentage of DCT bases removed based on its magnitude

80

90

Ac
cu

ra
cy

 o
n 

th
e 

 
 o

rig
in

al
 te

st
 se

t (
%

)

MNIST
FashionMNIST
CIFAR10
CIFAR100
SVHN
Caltech101
Imagenette

a. Parts of the signal with low spectral energy is irrelevant.
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b. Parts of the signal with high-frequency basis is irrelevant.

Figure 2: Irrelevant frequencies exist in the natural data. Accuracy on the original test set remains
high when the training inputs are modified by removing parts of the signal with a) low spectrum energy
and b) high frequencies. Stars represent test accuracy on models trained using the original training input.
In setting a), training images are filtered based on the magnitude of the DCT basis. Specifically, parts of
the image with DCT bases that have a magnitude in the bottom p

100 -th percentile are removed, so a large
p means more information is discarded. In setting b), training images are low-pass filtered, and p denotes
the percentage of the high-frequency components that are discarded in the training data. We explain the
formulation of the two settings in Appendix D. Examples of the modified inputs are included in Appendix G.

a neural network classifier, and such information is often featured with low spectrum energy or lives at the
high end of the frequency spectrum.

This observation leads to the first part of Claim 3.1. That is, models only need to learn how to correctly
use the crucial class-defining information from the training data to optimize the training objective. On the
other hand, the extent to which they utilize irrelevant information in the data is not well-regulated. This
can be problematic and lead to solutions sensitive to perturbations. In Sec. 4, we validate Claim 3.1 using
a linear regression analysis with a synthetic dataset that contains irrelevant information. We demonstrate
there exist multiple optima of the training objective and those solutions can all correctly use the relevant
information in the data, but the way they exclude irrelevant information from computing the output is
different. Specifically, a robust model disregards irrelevant information by assigning a weight of zero to it,
but a non-robust model has certain non-zero weights which, when combined with the irrelevant information
in the input, yield a net-zero effect in the output. In this case, although the two models are indistinguishable
under the original training objective, the non-robust model will experience a reduction in model performance
should this irrelevant information become corrupted at test time.

3.2 Observation II: Model Robustness along Irrelevant Frequencies

Let us now focus on the second part of the claim. If models’ responses to perturbations along the irrelevant
frequencies explain their robustness difference, then we should expect a similar accuracy drop between models
when perturbations are along relevant frequencies, but a much larger accuracy drop on less robust models
when test inputs are perturbed along irrelevant frequencies. Consider the robustness of the models when
the test data are corrupted with Gaussian noise: the perturbation along each spatial dimension is i.i.d and
drawn from a zero-mean Gaussian distribution with finite variance. This type of noise is commonly referred
to as the additive white Gaussian noise, where white refers to the property that the noise has uniform
power across the frequency spectrum (Diebold, 1998). Nevertheless, the previous discussion suggests that
noise along different frequencies does not have an equal impact on the models’ output. To verify this, we
assess the impact on model accuracy by perturbing only specific frequency ranges of the test inputs with
band-limited Gaussian noise.

To construct the band-limited Gaussian noise, we first follow the previous work (Wang et al., 2020) to group
DCT basis vectors based on their distance to the 0-frequency DC term and divide the entire DCT spectrum
into ten bands where each band occupies the same number of DCT bases. This is to ensure an identical ℓ2
norm among all the perturbations. Denote the binary mask of the i-th band by using M (i) ∈ {0, 1}d×d, its
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Figure 3: Visualization of the band-limited Gaussian perturbations. The DCT spectrum is divided
into ten equally sized bands to generate band-limited Gaussian perturbations. Denote them by using ∆x(i),
where i ∈ {0, 1, ..., 9}. The frequency represented in the spectrum plot increases from the top-left (lowest
frequency) to the bottom-right corner (highest frequency). Therefore, as the band moves towards higher
frequencies, perturbations exhibit more high-frequency checkerboard patterns.
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Figure 4: The effect of band-limited Gaussian perturbations on the model. Perturbations from the
lowest band, i.e., ∆x(0), have a similar effect on all the models, despite being trained by different algorithms
and exhibiting different robustness properties. On the other hand, models’ responses vary significantly when
the perturbation focuses on higher frequency bands. The results are averaged over three independently
initialized and trained models, and the shaded area indicates the standard error among the three models.

corresponding band-limited Gaussian noise is ∆x(i) = C⊤(M (i)⊙ δ)C, where δ ∼ N (0, σ2Id×d) and C is the
DCT transformation matrix defined in (4). Figure 3 illustrates how the frequency bases are grouped into ten
equally sized bands and examples of the band-limited Gaussian noise. Denote the perturbations by using
∆x(i), with ∆x(0) and ∆x(9) representing the lowest and the highest band, respectively. To investigate the
effect of the perturbation ∆x(i) on the models, we measure the change in classification accuracy when the
test inputs are perturbed by ∆x(i):

1
N

N∑
n=1

I {F (Xn) = Yn} −
1

NK

N∑
n=1

K∑
k=1

I
{

F (Xn + ∆x
(i)
k ) = Yn

}
, (6)

where F is a neural network classifier, {(Xn, Yn)}N
n=1 represents the test dataset, each test input is perturbed

by i.i.d sampled ∆x
(i)
k and the subscript k is used to differentiate between K instances of the randomly

sampled noise; and we use K = 10 in our experiments. It is important to realize in (6) that the additive
noise ∆x is applied to the spatial signal X, although we are limiting the frequency band of the noise.

Figure 4 demonstrates how the classification accuracy degrades under different band-limited Gaussian noises
on MNIST, CIFAR100, and Imagenette; and results on the other datasets are included in Appendix G.
First, notice that the perturbation from the lowest band ∆x(0) has a similar impact on all the models
regardless of the algorithm they are trained by. There is however a noticeable difference in how models
trained by SGD and adaptive gradient methods respond to perturbations from higher frequency bands. On
models trained by SGD, the flattened curve implies that the effect of high-frequency perturbations on the
generalization performance quickly diminishes to zero, suggesting that models are not sensitive to changes
along the dimensions of irrelevant frequencies. Contrarily on models trained by the two adaptive gradient
methods, we observe a difference in the way models respond to perturbations of higher frequency bands. On
CIFAR100, for example, the two models are highly vulnerable to Gaussian perturbations from bands 5 to
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7. This observation shows that when models, during their training phase, do not have mechanisms in place
to limit their use of irrelevant frequencies, their performance can be compromised if data along irrelevant
frequencies become corrupted at test time.

One can also observe that models’ responses to high-frequency Gaussian perturbations varies among datasets.
This can be attributed to the fact that (ir-)relevant frequencies are most likely going to be a unique char-
acteristic for a particular dataset. We do not expect a dataset that solely consists of hand-written digits
to share the same (ir-)relevant frequencies as one that consists of real-world objects. Moreover, the dimen-
sion (image resolution) of inputs for a given dataset matters, as a higher dimension potentially can allow
more irrelevant frequencies. Therefore, we emphasize that the goal of our work is not to identify the exact
(ir-)relevant frequencies among datasets. Rather, the analysis is built on the presence of irrelevant frequen-
cies in the dataset, especially towards the higher end of the frequency spectrum, and how models differ in
their robustness when trained by different algorithms. In the next section, we investigate the reason for such
a robustness difference by studying how the irrelevant frequencies affect the learning dynamics of GD and
signGD under a synthetic linear regression task.

4 Linear Regression Analysis with an Over-parameterized Model

In this section, we study the learning dynamics of GD and signGD on least squares regression with linear
models to understand why models trained using the two algorithms have the same standard generalization
performance but exhibit different robustness against perturbations. On a synthetic dataset that emulates
the energy distribution of natural datasets in the frequency domain, we design a learning task that has
multiple optima for the standard population risk, each with a different adversarial risk. We analyze the
weight adaptation under GD and signGD in both spatial and frequency domains and show that training
with signGD can result in larger weights associated with irrelevant frequencies, resulting in models with a
higher adversarial risk. Our result verifies claim 3.1. We report the main results here and defer the full
derivations to Appendix E.

4.1 Problem Setup

Consider a linear model f(x, w) = ⟨w , x ⟩ with x, w ∈ Rd, where w and x are the weight and the signal
represented in the spatial domain, respectively. Since the DCT transformation matrix C is an orthogonal
matrix whose rows and columns are unit vectors, an alternative way to represent this model is:

f(x, w) = ⟨w , x ⟩ = w⊤x = w⊤C⊤Cx = ⟨ w̃ , x̃ ⟩ = f(x̃, w̃),

where w̃ and x̃ are the exact same weight and signal but are now represented in the frequency domain. This
means that for linear models, computing the output of the model can be carried out in either domain as long
as we use the matching representation of the signal and the weight. The goal of the linear analysis is to study
the learning dynamics of different algorithms in a synthetic and controlled environment where one can clearly
define the frequency-domain signal-target (ir)relevance to help understand the behavior of models in more
complex settings. For this reason, let w̃∗ denote the frequency-domain representation of the true model that
is used to interact with the input x̃ and generate the target: y = x̃⊤w̃∗, where w̃∗ = (w̃∗

0 , w̃∗
2 , . . . , w̃∗

d−1)⊤.
We consider the squared error pointwise loss, which can be equally formulated in both domains:

ℓ(x, y; w) = 1
2 |f(x, w)− y|2

= 1
2 |⟨x , w ⟩ − ⟨x , w∗ ⟩|2

and
ℓ(x̃, y; w̃) = 1

2 |f(x̃, w̃)− y|2

= 1
2 |⟨ x̃ , w̃ ⟩ − ⟨ x̃ , w̃∗ ⟩|2 .

Denote the error between the learned weight and the true weight at iteration t by e(t) = w(t)−w∗, and the
standard risk by Rs(w) = E [ℓ(X, Y ; w)]. In a similar way, those terms can be represented in the frequency
domain as ẽ(t) = w̃(t)− w̃∗ and Rs(w̃) = E

[
ℓ(X̃, Y ; w̃)

]
. Now we are ready to explain the design philosophy

behind the synthetic dataset, the structure of the true model w̃∗, and particularly, with regard to robustness,
the ideal model that minimizes the effect of perturbations.

9
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Suppose that X̃ follows a Gaussian distribution N (µ̃, Σ̃). For analytical tractability, we consider µ̃ = 0 and
a diagonal structure of Σ̃, i.e., Σ̃ = diag(σ̃2

0 , ..., σ̃2
d−1). This implies that in the spatial domain, X follows

a Gaussian distribution N (0, Σ) where Σ = C⊤Σ̃C. In Appendix E.1, we provide examples of the spatial-
domain structure of the data, when we define the distribution directly in the frequency domain. In Sec. 3,
we demonstrate that natural datasets exhibit a particular energy profile where signals contain irrelevant
information represented by high-frequency and low-amplitude waves. To emulate this setting with a synthetic
dataset, we define frequencies that are (ir)relevant in generating the target. Let Iirrel ⊆ {1, 2, ..., d− 1} and
Irel = {0, 1, 2, ..., d − 1} − Iirrel denote the set of irrelevant and relevant frequencies, respectively. Recall
that the goal is to make high-frequency components of the dataset irrelevant, so we exclude the DC term
(0 /∈ Iirrel) when considering irrelevant frequencies, as it is the lowest frequency possible. Next, we specify
the energy distribution of the synthetic dataset. The expected energy of a random signal following such a
distribution is

E
[
E(X̃)

]
= E

[
d−1∑
i=0
|X̃i|2

]
=

d−1∑
i=0

E
[
X̃2

i

]
=

d−1∑
i=0

σ̃2
i . (7)

We assume that σ̃2
i = 0 if i ∈ Iirrel, meaning the irrelevant frequencies of the data from the synthetic dataset

have zero energy contributions. The purpose of this is to imitate the behavior of real-world datasets, where
the high-frequency components have a negligible impact on the overall energy of the signal.

To see how having irrelevant frequencies affect the structure of the true model, notice that the definition of
the synthetic dataset implies X̃i = 0 for all i ∈ Iirrel. This means that the true target value does not depend
on those irrelevant frequencies. Clearly, this linear model is over-paramaterized because one only needs to
specify w̃∗

i for all i ∈ Irel to establish the signal-target relationship.

The objective of the standard risk with such a synthetic dataset is not strictly convex, i.e., there are multiple
minimizers with zero standard risk, as the value of w̃∗

i for all i ∈ Iirrel has no impact on the model output.
For clarity, let us define W̃∗ = { w̃∗ : Rs(w̃∗) = 0 } as the set that includes all standard risk minimizers.
Having multiple standard risk minimizers is the result of over-parametrization; however, there is a unique
solution that achieves zero standard risk and makes the model immune to any perturbations parallel to the
directions of the irrelevant frequencies, and it corresponds to having zero weight at irrelevant frequencies:
w̃∗

i = 0 for all i ∈ Iirrel: Define such a robust standard risk minimizer as w̃R ∈ W̃∗, we have

w̃R
i ≜

{
w̃∗

i for all i ∈ Irel
0 otherwise.

(8)

Note that we use w̃∗ to denote any arbitrary standard minimizers in W̃∗. To see why w̃R is the most robust
standard minimizer, we introduce the adversarial risk to capture the worst-case performance of the model
under an ℓ2-constrained perturbation. Similar to the squared error loss, the adversarial risk can also be
equally formulated in both domains:

Ra(w) ≜ E(X,Y )

[
max

||∆x||2≤ϵ
ℓ(X + ∆x, Y ; w)

]
and Ra(w̃) ≜ E(X̃,Y )

[
max

||∆x̃||2≤ϵ
ℓ(X̃ + ∆x̃, Y ; w̃)

]
,

where the ℓ2-constraint with a size of ϵ has an equivalent effect in both domains. To understand the
adversarial risk from a frequency-domain perspective, let us focus on Ra(w̃):

Ra(w̃) = EX̃

[
max

||∆x̃||2≤ϵ

1
2

∣∣〈 X̃ , w̃ − w̃∗ 〉
+ ⟨∆x̃ , w̃ ⟩

∣∣2
]
, (9)

where we focus on the expectation over X̃, as Y is replaced with
〈

X̃ , w̃∗ 〉
. Notice that the maximization

is inside the expectation. This means that we are finding a separate perturbation for each input. Therefore,
the maximizer, ∆x̃∗, of a given X̃ within the expectation in (9) is

∆x̃∗ ≜ arg max
||∆x̃||2≤ϵ

1
2

∣∣〈 X̃ , w̃ − w̃∗ 〉
+ ⟨∆x̃ , w̃ ⟩

∣∣2 = ϵ sign[
〈

X̃ , w̃ − w̃∗ 〉
] w̃

||w̃||2
. (10)
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Now knowing the worst-case perturbation to any X̃, we can continue the derivation in (9) with

Ra(w̃) = 1
2EX̃

[∣∣〈 X̃ , w̃ − w̃∗ 〉
+ ϵ sign[

〈
X̃ , w̃ − w̃∗ 〉

] ∥w̃∥2
∣∣2

]
= 1

2
∑

i∈Irel

σ̃2
i (w̃i − w̃∗

i )2 + ϵ

√
2
π

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i )2 ∥w̃∥2 + ϵ2

2 ∥w̃∥
2
2 . (11)

Finding the exact minimizer to (11) is more involved. Without doing that however, it is obvious that for an
arbitrary standard risk minimizer w̃∗ from W̃∗, we can evaluate (11) at w̃∗ and obtain its the adversarial
risk as

Ra(w̃∗) = ϵ2

2 ||w̃
∗||22, (12)

where the first two terms in (11) become zero at any fixed standard risk minimizer. This shows that the
robustness of the standard risk minimizers against ℓ2-bounded perturbations is inversely proportional to the
norm of the linear model. That is, a smaller norm implies better robustness. Recall that when evaluating
the standard risk of the model, the weights associated with irrelevant frequencies do not matter, since they
are never used in computing the output of the model. On the contrary, the ||w̃∗||22 term in (12) implies that
those weights matter when considering the robustness of the model under perturbations. It is not difficult
to see that the minimum adversarial risk can be achieved on a unique standard risk minimizer w̃R (8).

Therefore, in the over-parameterized linear regression setting, a standard risk minimizer with a minimum
norm is preferred when considering the robustness of the model, and a model with zero weight at irrelevant
frequencies is the most robust solution among the standard risk minimizers. With this example, we verify
Claim 3.1. While standard risk minimizers can correctly use the relevant information of the data, their use
of irrelevant information is under-constrained. This can result in significant weight assigned to irrelevant
frequencies, making models more susceptible to perturbations.

Next, we study the learning dynamics of GD and signGD and demonstrate that the solutions found by GD
and signGD differ in the weight of the irrelevant frequencies. This causes the solutions found by the two
algorithms to have a similar standard population risk, but behave very differently under perturbations.

4.2 Analysis on the Learning Dynamics of GD and signGD

We now analyze the weight adaptation of a linear model under GD and signGD, and experimentally verify
our results. Our analysis shows that for the over-parameterized linear model, GD finds solutions with a
standard risk of exactly zero, and signGD finds solutions with a standard risk close to zero. However, they
have different robustness properties. In the presence of irrelevant frequencies, GD is more likely to converge
to a solution that is less sensitive to perturbations along the direction of irrelevant frequencies, whereas
signGD is more likely to converge to solutions that are more prone to such perturbations.

4.2.1 GD Dynamics

Let us start with GD in the spatial domain. Suppose that we initialize the weights in the spatial domain as
w(0) = W ∼ N(0, ΣW ) where ΣW ∈ Rd×d. Similar to how both X̃ and X follow a Gaussian distribution, the
frequency representation of the initialized weight also follows a Gaussian distribution: w̃(0) = W̃ ∼ N (0, Σ̃W )
where Σ̃W = CΣW C⊤. To train the model, we use GD on the population risk:

w(t + 1)← w(t)− η∇wRs(w(t)). (13)

The gradient computed using the population risk is ∇wRs(w(t)) = E
[
XX⊤]

e(t) = Σe(t), and the learning
dynamics of GD in the spatial domain can be captured using:

e(t + 1) = w(t + 1)− w∗ = w(t)− w∗ − ηΣe(t) = (I − ηΣ)t+1e(0). (14)

This shows that the learned weight converges to the optimal weight w∗ at a rate depending on Σ. To see
the GD dynamics in the frequency domain, we can simply perform DCT on both sides of (14):

ẽ(t + 1) = C(I − ηΣ)t+1e(0) = (I − ηΣ̃)t+1ẽ(0), (15)

11
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where Σ̃ is the covariance of x̃. It is easy to see that no weight adaptation happens for the irrelevant
frequencies because σ̃2

i = 0 for all i ∈ Iirrel. As Σ̃ is diagonal, choosing the learning rate η such that
η maxi∈{0,...,d−1} Σ̃ii < 1, we get that the asymptotic solution is

w̃GD
i ≜ lim

t→∞
w̃i(t) =

{
w̃∗

i for all i ∈ Irel
w̃i(0) otherwise.

(16)

That is, the initial random weights at the irrelevant frequencies do not change. Using (12), we have

Ra(w̃GD) = ϵ2

2 ||w̃
GD||22 = ϵ2

2

 ∑
i∈Irel

w̃∗2
i +

∑
j∈Iirrel

w̃j(0)2

 . (17)

Comparing the standard risk minimizer found by GD with the robust standard risk minimizer in (8), we
notice that the GD solution is not the most robust among all standard risk minimizers, as it is sensi-
tive to perturbations along irrelevant frequencies. Suppose that the initialized weight in the frequency
domain is randomly sampled from N (0, σ2Id×d), and the signal-target relationship is determined by a hand-
ful of relevant frequencies. Taking the expectation of (17) over the randomly initialized weight, we have
Ew̃(0)

[
Ra(w̃GD)

]
≈ O(ϵ2dσ2), so the adversarial risk can be quite significant if there is a large number of

irrelevant frequencies, i.e., |Irel| ≪ d and |Iirrel| ≈ d.

This example shows that the GD solution is sensitive to initialization. Because there is no mechanism in
place to actively ensure that the weights associated with these irrelevant frequencies become zero, GD is not
forcing the initial weights to go to zero at those frequencies. One solution is to include the weight norm as a
penalty term along with the original optimization objective, but this can result in learning a biased solution.
Another simple fix is to initialize the weight at exactly 0. This robustifies the GD solution by initializing
those irrelevant weights at the most robust state.

4.2.2 SignGD Dynamics

Adaptive gradient algorithms like Adam and RMSProp utilize historical gradient information as a momentum
mechanism for updating model parameters, thereby expediting the learning process. However, it is important
to note that their acceleration is not solely attributable to this feature, nor is their adaptiveness limited to it.
In (3), we have demonstrated how signGD, a memory-free version of Adam and RMSProp, can adaptively
adjust the update using a coordinate-wise learning rate. Although signGD is not a suitable choice for
training deep neural networks (Riedmiller & Braun, 1993; Ma et al., 2022b), examining its behavior can
provide insights into the learning dynamics of other adaptive gradient methods (Karimi et al., 2016; Balles
& Hennig, 2018; Moulay et al., 2019). Additionally, in Sec. 4.2.3, we empirically justify the use of signGD
as a suitable alternative in understanding the learning dynamics of Adam and RMSProp.

Again, let us start with signGD in the spatial domain. The update rule using the population risk takes the
sign of the gradient computed using the population risk

w(t + 1)← w(t)− η sign[∇wRs(w)], (18)

and its learning dynamics in the spatial domain is

e(t + 1) = w(t + 1)− w∗ = e(t)− η sign[Σe(t)]. (19)

Unlike the GD dynamics in (14), (19) shows that the behavior of signGD depends on the sign of Σe(t),
and this means that when |[Σe(t)]i| ≪ 1, training using signGD can accelerate the learning along the i-th
dimension. Although we can obtain Σ from Σ = C⊤Σ̃C, the structure of Σ is subject to variation based on
Σ̃, so it is difficult to find an analytical solution for the dynamics of the model trained under signGD, such
as (14) where we have a closed form for e(t) as a function of e(0) for models trained under GD. This means
that analyzing the signGD dynamics is limited to studying its step-by-step update based on the sign of the
entries in Σe(t).
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The signGD learning dynamics in the frequency domain can be obtained by taking the DCT transformation
on both sides of (19):

ẽ(t + 1) = ẽ(t)− ηC sign[Σe(t)] = ẽ(t)− ηC sign[C⊤Σ̃ẽ(t)], (20)

where the error and the covariance terms inside of the sign are also transformed into their frequency-domain
representations. Equation 20 shows that analyzing the behavior of signGD in the frequency domain requires
knowing the sign of the entries in C⊤Σ̃ẽ(t). This term can be understood as an inverse DCT transformation
of Σ̃ẽ(t), and with a diagonal structure of Σ̃, we know that Σ̃ẽ(t) =

[
σ̃2

0 , ..., σ̃2
d−1

]⊤ ⊙ ẽ(t). However, similar
to the situation in (19), the sign of the entries in C⊤Σ̃ẽ(t) is dependent on ẽ(t) at different steps, so obtaining
an analytical solution for the frequency-domain dynamics is also challenging.

In both (19) and (20), we see that understanding the signGD dynamics for any general Σ̃ can be complicated.
Thus, we focus on a structure of Σ̃ that simplifies the analysis but still allows us to understand why training
with signGD results in vulnerable models. In particular, we consider a data distribution where X̃ ∼ N (µ̃ =
0, Σ̃ = diag

{
σ̃2

0 , σ̃2
1 , 0

}
). This definition implies that the data distribution contains irrelevant information at

the highest frequency basis and we have X̃2 = 0 for all datapoints.

Now, we continue with signGD learning dynamics in the frequency domain from (20). Let us denote A(t) =√
3

3 σ̃2
0 ẽ0(t) and B(t) =

√
2

2 σ̃2
1 ẽ1(t), and C = C(3) follows the DCT transformation matrix defined in (4). With

some algebraic manipulation, we have

ẽ(t + 1) = ẽ(t)− η


√

3
3 (sign[A(t) + B(t)] + sign[A(t)] + sign[A(t)−B(t)])√

2
2 (sign[A(t) + B(t)]− sign[A(t)−B(t)])√

6
6 sign[A(t) + B(t)]−

√
6

3 sign[A(t)] +
√

6
6 sign[A(t)−B(t)]

 , (21)

and we include its complete derivation in Appendix E.7. With this particular choice of Σ̃, (21) shows that
weight adaptation depends on the sign of three terms: A(t), A(t) + B(t) and A(t) − B(t). In Table 9 of
Appendix E.8, we study the learning dynamics of signGD by analyzing all 27 sign combinations and their
corresponding updates. We report the main results here and defer the detailed analysis to Appendix E.8.

With a constant learning rate of η, the asymptotic signGD solution converges to an O(η) neighborhood of
the standard risk minimizer:

lim sup
t→∞

|w̃i(t)− w̃∗
i | = O(η), (22)

where i ∈ {0, 1}. In particular, we demonstrate that w̃0 oscillates in an O(η) neighborhood of w̃∗
0 . Consider

T as the first iteration after which w̃0 starts oscillating, and define ∆w̃2 as the sum of all the updates in w̃2
up to the T -th iteration. The limiting behavior of w̃2 under signGD update is

lim sup
t→∞

|w̃2(t)| = |w̃2(T ) + O(η)| = |w̃2(0) + ∆w̃2 + O(η)| , (23)

where w̃2(0) is the weight at initialization. This means that after T iterations, for all t′ > T , w̃2(t′) stays in
an O(η) neighborhood of w̃2(T ). As such, we have the asymptotic solution found by signGD:

w̃signGD = [w̃∗
0 , w̃∗

1 , w̃2(0) + ∆w̃2]⊤ + O(η). (24)

From the perspective of training under the standard risk, the signGD solution is close to the optimum.
Specifically, its standard risk is

Rs(w̃signGD) = E
[
ℓ(X̃, Y ; w̃signGD)

]
= 1

2E
[〈

X̃ , w̃signGD − w̃∗ 〉2]
= O((σ̃2

0 + σ̃2
1)η2). (25)

Note that the standard risk of the GD solution is exactly zero; and by choosing a sufficiently small learning
rate η, the standard risk of the signGD solution can also be close to zero as well. However, their adversarial
risks are very different. Specifically, the adversarial risk of the asymptotic signGD solution is

Ra(w̃signGD) = ϵ2

2 ||w̃
signGD||22 = ϵ2

2

{
w̃∗2

0 + w̃∗2
1 + (w̃2(0) + ∆w̃2)2

}
. (26)
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We can compare it with the adversarial risk of the asymptotic solution found by GD under the same setup:

Ra(w̃GD) = ϵ2

2
{

w̃∗2
0 + w̃∗2

1 + w̃2(0)2}
. (27)

It can be observed that the main difference between the two adversarial risks in (26) and (27) arises from the
difference in weights learned at the irrelevant frequency. Since their use of irrelevant frequency in the data
is under-constrained, neither algorithm can reduce w̃2 to zero, thereby neither solution is the most robust
standard risk minimizer. As discussed in Sec. 4.2.1, the GD solution is sensitive to weight initialization.
Before understanding the ∆w̃2 term in the signGD solution, we first introduce two assumptions on the
synthetic dataset that serve to better emulate the distribution found in the natural dataset. Consider a
dataset with a strong task-relevant correlation between the relevant frequency component of the data and the
target, a realistic scenario as we discussed in Sec. 3.2. In this case, |w̃∗

0 | and |w̃∗
1 | can be large. Additionally,

with a weight initialization around zero, such as in methods by He et al. (2015) and Glorot & Bengio
(2010), the initial error |ẽ0(0)| and |ẽ1(0)| can be large and close to |w̃∗

0 | and |w̃∗
1 | when |w̃∗

0 | ≫ |w̃0(0)|
and |w̃∗

1 | ≫ |w̃1(0)|. Moreover, it is discussed in Sec. 3.1 and later supported empirically in Figure 8 of
Appendix G that the distribution of spectral energy heavily concentrates at the low end of the frequency
spectrum and decays quickly towards higher frequencies. Since σ̃2

i is interpreted as the expected energy of
a random variable at the i-th frequency, it is reasonable to expect that σ̃2

1
σ̃2

0
< 1

3 .

With the two assumptions, we demonstrate that ∆w̃2 is proportional to |w̃∗
0 | or |w̃∗

1 | depending on the
initialization of |A(0)| and |B(0)|. In particular, we have

|∆w̃2| ≈

{√
3C |w̃∗

0 | if |A(0)| < |B(0)|
3

√
2σ̃2

1
2σ̃2

0
C |w̃∗

1 | if |A(0)| > |B(0)| , (28)

where C ∈ [
√

6
6 ,

√
6

3 ]. To quantitatively understand the robustness difference between solutions found by the
two algorithms, we consider the ratio between the adversarial risk of the standard risk minimizers found
by GD (27) and signGD (26) with a three-dimensional input space. We observe that the solution found by
signGD is more sensitive to perturbations compared to the GD solution:

Ra(w̃signGD)
Ra(w̃GD) ≈

1 + C3
w̃∗2

0
w̃∗2

0 +w̃∗2
1

if |A(0)| < |B(0)|

1 + C4
w̃∗2

1
w̃∗2

0 +w̃∗2
1

if |A(0)| > |B(0)| ,
(29)

where 1
2 ≤ C3 ≤ 2 and 3

4
σ̃4

1
σ̃4

0
≤ C4 ≤ 3 σ̃4

1
σ̃4

0
. Given that this ratio is always greater than 1, the linear model

obtained through GD is always more robust against ℓ2-bounded perturbations in comparison to the model
obtained from signGD.

4.2.3 Empirical Validation

To validate our analysis, in Figure 5 we create a three-dimensional dataset using (σ̃2
0 , σ̃2

1 , σ̃2
2) =

(0.01, 0.0025, 0), and (w̃∗
0 , w̃∗

1 , w̃∗
0) = (5, 10, 0), and compare the dynamics of the frequency-domain weight

error on models trained by GD, Adam, RMSProp, and signGD. All models are initialized with the same
weight and are trained using a fixed learning rate of 0.01. At each training iteration, we sample 1000 data
points and compute the gradient based on the sampled data. We want to clarify that even though we analyze
the weight update dynamics in both frequency and spatial domains, the actual training still takes place in
the spatial domain.

In (15), we show that the GD solution w̃GD
i (t) converges to w̃∗

i with a rate of 1− ησ̃2
i . Therefore, when σ̃2

i is
small, learning can be particularly slow for weights associated with the i-th frequency, as shown in Figure 5a.
On the other hand, notice in Table 9 that |ẽ0| gets reduced by at least

√
3

3 regardless of the magnitude of σ̃2
0

for signGD. This means that the magnitude of σ̃2
i does not directly affect the convergence speed. Instead,

the relative magnitude between A(t) and B(t) determines the frequency which receives priority during the
learning process. As a result, we observe an acceleration for models trained by signGD.
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Figure 5: Comparing (a) the learning dynamics, (b) the standard and adversarial population
risk of linear models trained by GD, Adam, RMSProp, and signGD. We create a three-dimensional
dataset created using (σ̃2

0 , σ̃2
1 , σ̃2

2) = (0.01, 0.0025, 0), and (w̃∗
0 , w̃∗

1 , w̃∗
2) = (5, 10, 0). All models are initialized

with the same weight (w̃0(0), w̃1(0), w̃2(0)) = (0.01,−0.01, 0.02) and trained using a fixed learning rate
of 0.01. (a) Dynamics of the error term. During the signGD training process, the error along the
irrelevant frequency grows until ẽ0 starts to oscillate around 0. In our example, the green highlighted areas in
the figure correspond to the iterations before ẽ0 starts to oscillate, and the red areas show that the error along
the irrelevant frequency cannot be corrected. (b) The standard population risk and the adversarial
population risk (ϵ =

√
2). We notice that despite all models can reach zero standard population risk, their

adversarial population risks are different. The adversarial population risk of models trained by adaptive
gradient methods is higher than the one from the model trained by GD, indicating lower robustness.

Next, we observe that the error trajectory for the model trained by signGD closely resembles the one from
the model trained by Adam for ẽ0 and ẽ1. In the analysis of signGD, we show that |ẽ2| increases till |ẽ0| starts
oscillating in O(η). Figure 5a shows that this pattern can be observed in models trained by Adam as well.
This shows that signGD is a suitable alternative to understanding the learning dynamics of models under the
proposed linear regression task. For models trained by GD, since there is no update on the weight associated
with the irrelevant frequency, ẽ2 remains at the initialized value throughout training. To demonstrate the
weight adaptation under signGD, we divide the training into two phases, as highlighted by two background
colors. The green area indicates that |ẽ0| decreases and |ẽ2| increases in the meanwhile. Once oscillation
begins for |ẽ0|, |ẽ2| can no longer be corrected. This behavior corresponds to the purple area in Figure 5a.

In Figure 5b, we compare the standard population risk and the adversarial population risk of different models.
We notice that despite all models reaching near zero standard population risk, their adversarial population
risk is different. In particular, the adversarial population risk of models trained by adaptive gradient methods
is higher than the one from the model trained by GD, indicating lower robustness. Choosing ϵ =

√
2 in (12),

the adversarial risk of those standard risk minimizers is exactly the squared ℓ2 norm of the weight. With
our choice of initialization, the resulting |A(0)| and |B(0)| are 0.0289 and 0.0177 respectively. This means
that the ratio between the two adversarial risks is Ra(w̃signGD)

Ra(w̃GD) ∈ [1.04, 1.15] according to (29), and this aligns
with the ratio of 1.146 obtained empirically from the experiments.

This simple problem illustrates how the optimization algorithms and an over-parameterized model might
interact, and learning with signGD can lead to a solution that is more prone to perturbations. In this
section, we focus on analyzing the robustness of the solution from a frequency domain perspective, that is,
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Table 1: Comparing the upper bound on the Lipschitz constant and the averaged robust accu-
racy of neural networks trained by SGD, Adam, and RMSProp. We follow (Gouk et al., 2021) to
compute the Lipschitz constants of each layer in isolation and multiply them together to establish an upper
bound on the constant of the entire network. Notice that across all selected datasets, models trained by SGD
have a considerably smaller upper bound compared to models trained by Adam and RMSProp. In Figure 1,
we demonstrate the robustness of the neural networks under Gaussian noise, ℓ2 and ℓ∞ bounded adversarial
perturbations (Croce & Hein, 2020). Here, we average the accuracy across the perturbations and get a single
score quantifying the model’s robustness. All results are averaged over three independently initialized and
trained models.

Dataset MNIST Fashion CIFAR10 CIFAR100 SVHN Caltech101 Imagenette

∏l

i=1 L(ϕi)
SGD 3.80 3.83 26.81 40.41 22.65 18.53 23.99
Adam 5.75 8.12 28.70 41.87 30.45 26.20 28.55
RMSProp 6.21 5.11 37.75 41.71 28.31 45.84 27.11

Averaged
Robust Acc.

SGD 77.97% 77.95% 63.21% 55.65% 69.08% 71.42% 67.59%
Adam 65.64% 67.60% 57.71% 45.25% 65.60% 55.03% 58.86%
RMSProp 63.54% 71.34% 56.47% 47.55% 65.37% 53.16% 57.98%

the behavior of w̃ with an input perturbation of ∆x̃. In Appendix E.9, we present a spatial interpretation of
the result and demonstrate how signals with irrelevant frequencies contain spatially redundant dimensions.

5 Connecting the Norm of Linear Models to the Lipschitzness of Neural Networks

The takeaway from the over-parameterized linear regression analysis is that among all standard risk mini-
mizers, the minimum norm solution is the most robust one. That is, a smaller weight norm implies better
robustness. This suggests a connection between the weight norm and model robustness. Nonetheless, the
major limitation of the analysis is that it is designed for a linear model. In this section, we generalize such
a connection to the deep learning setting and verify it using the robustness of neural networks trained by
different algorithms.

One major obstacle is that the notion of weight norm as defined for linear models is not generally applicable
to neural networks. However, we can still relate the weight of a network to its sensitivity with respect to
changes in the input space. Consider a single-layer ReLU-activated feedforward network with x ∈ Rd and
W ∈ RD×d. With a perturbation of ∆x ∈ Rd constrained by the vector ℓp-norm, the maximum change in
the model output as measured by the same norm can be bounded using

∥ReLU (W (x + ∆x))− ReLU (Wx)∥p ≤ ∥W∆x∥p ≤ ∥W∥p ∥∆x∥p , (30)

where ∥W∥p denotes the vector ℓp-norm induced matrix norm of the weight W and is referred to as the
Lipschitz constant of this single-layer model.

Consider the ℓp vector norm, for all x1, x2 ∈ R, a function f is said to be Lipschitz continuous if
||f(x1)− f(x2)||p ≤ L||x1 − x2||p, for some real-valued Lipschitz constant L ≥ 0.4 Indeed, the Lipschitz
constant of a function with respect to inputs captures how sensitive the model is in relation to changes in
the input space.

In the single-layer model example, its Lipschitz constant is exactly the matrix norm of the weight. More
generally, consider the feed-forward neural network as a series of function compositions:

f(x) = (ϕl ◦ ϕl−1 ◦ . . . ◦ ϕ1)(x),

4Any value of L satisfying the Lipschitz condition is considered a valid Lipschitz constant. For the sake of clarity, we will
refer to the smallest (optimal) Lipschitz constant as L.
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where each ϕi is a linear operation, an activation function, or a pooling operation. A particularly useful
property of the Lipschitz function is that the composition of Lipschitz functions with Lipschitz constant
L1, L2, ..., LN w.r.t. the same norm is also Lipschitz with an upper-bound on the Lipschitz constant
L ≤ L1L2...LN . Denoting the Lipschitz constant of function f as L(f), we can establish an upper bound on
the Lipschitz constant for the entire feed-forward neural network using

L(f) ≤
l∏

i=1
L(ϕi). (31)

As such, for a multi-layer neural network that comprises repeated layers of linear operation followed by
non-linear activation, we can upper bound the change in model output with respect to the change in the
input space by multiplying the operator norms of the weights. It is important to realize that (31) is not a
tight upper bound, and in fact, computing the exact Lipschitz constant of the neural network is NP-hard
(Virmaux & Scaman, 2018). Nonetheless, this approach allows us to draw connections between the weight
and the robustness of the model in the context of neural networks.

Results in Sec. 4 indicate that linear models trained by signGD have larger weight norms, indicating less
robustness. Therefore, we expect in the deep learning setting that neural networks trained by SGD are more
robust, as they have a smaller Lipschitz upper bound, as shown in Figure 1. To verify this, we follow the
techniques in Gouk et al. (2021) and compute an upper bound on the Lipschitz constant of the same neural
networks trained by SGD, Adam, and RMSProp in Figure 1. Results are shown in Table 1. The result
shows that across all datasets and architectures, models trained by SGD have a smaller upper bound on
the Lipschitz constant compared to models trained by the two adaptive gradient methods. In Figure 1, we
demonstrate the robustness of the neural networks under Gaussian noise, ℓ2 and ℓ∞ bounded adversarial
perturbations (Croce & Hein, 2020). In Table 1, we average the accuracy across the perturbations and get
a single score quantifying the model’s robustness. We observe that a smaller upper bound on the Lipschitz
constant of a neural network implies better robustness against perturbations.

6 Conclusions

In this paper, we highlighted the robustness difference between models trained by SGD and adaptive gradient
methods, particularly Adam and RMSProp. To understand this phenomenon, we leveraged a frequency-
domain analysis, and demonstrated that natural datasets contain frequencies that are irrelevant to minimizing
the standard training loss. Empirically, through a band-limited perturbation analysis on neural networks
trained on common vision datasets, we showed that models trained by the adaptive gradient method utilize
the statistics in the irrelevant frequency, and thus they experience a huge drop in performance when the
same statistics become corrupted. Analytically, on a synthetic linear regression task where the dataset was
designed to contain target-irrelevant frequencies, we showed that while both GD and signGD can find the
solution with standard risks close to zero, the adversarial risk of the asymptotic solution found by signGD
can be larger than that of GD. Such results from the linear analysis explained the observation in Figure 1 and
suggested that a smaller model parameters’ weight norms may indicate a larger model robustness. Finally,
in the deep learning setting, we showed that models trained by SGD have a noticeably smaller Lipschitz
constant than those trained by Adam and RMSProp.

Our work has some limitations. First, when conducting a theoretical analysis of various optimizers, we
opted for signGD as a simpler alternative to Adam and RMSProp. Second, our focus was primarily on
linear models. However, it is crucial to acknowledge that deep neural networks inherently possess non-linear
characteristics, which limit the depth of insights derived from linear models. Therefore, one promising future
direction is to incorporate tools such as neural tangent kernels (Jacot et al., 2018), which provide a deeper
understanding of network dynamics. Third, our analysis focuses on optimization algorithms along with the
standard objective function. We can also study the effect of optimizer with alternative objectives that are
designed to improve the robustness of the model (Simon-Gabriel et al., 2019; Wen et al., 2020; Ma et al., 2020;
Foret et al., 2021). For instance, the effect of adversarial training using perturbations similar to the Fast
Gradient Sign Method (FGSM) under the linear regression setup has been studied by Ma et al. (2020). In
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linear classification, Wei et al. (2023) showed that minimizing the sharpness-aware loss (SAM) (Foret et al.,
2021) can lead to robust models. Further discussions on this study can be found in Appendix F. Another
promising direction for future research is to analyze model robustness by coupling various optimization
algorithms with different optimization objectives.
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A Summary of the Supplementary Material

The supplementary material is organized as follows. In Appendix B, we first describe the data augmentation,
the exact optimization schedule, and the model architectures used to train the models. In Appendix C, we
describe the complete generalization and robustness results in Table 3 and how they are used to generate
Figure 1. In Appendix D, we discuss how the training inputs are modified when making the observations
in Sec. 3. In Appendix E, we provide additional detail on the linear analysis in Sec. 4. In Appendix F,
we discuss how our analysis relates to the sharpness-aware minimization (SAM). Finally, in Appendix G,
we provide additional figures including visualization of the perturbed images, the modified images used in
Sec. 3.1, and the frequency sensitivity comparison in Sec. 3.2.

B Training Details

Data augmentation: In our paper, we study how the presence of irrelevant information in the dataset
affects the robustness of the model when trained by different algorithms. We approach this problem from a
frequency-domain perspective. Specifically, we leverage the structure and energy profile of the dataset in the
frequency domain. While data augmentation methods are widely used in training machine learning models
to improve generalization and reduce overfitting, understanding how those methods affect the datasets in
the frequency domain requires additional analysis tailored for each augmentation method. Therefore, on
FashionMNIST, CIFAR10, CIFAR100, Caltech101, and Imagenette, training inputs are augmented with
random horizontal flipping, a method that does not change the frequency profile of the image.

Optimization schedule: For all models, we use the following default PyTorch (v1.12.1) optimization
settings. For SGD, we disable all of the following mechanism: dampening, weight decay, and Nesterov. For
Adam, we use the default values of β1 = 0.9 β2 = 0.999, ϵ = 10−8 and disable weight decay and disable
AMSgrad (Reddi et al., 2018). For RMSProp, we use default values of α = 0.99, ϵ = 10−8, and disable
momentum and disable centered RMSProp which normalizes the gradient by an estimation of its variance.
All models are trained for 200 epochs. In Table 2, we list the initial learning rate. The learning rate decreases
by a factor of 0.1 at epoch 100 and 150.

Table 2: Experiment setup: the initial learning rate and the definition of neural networks in this paper.

Dataset Optimization Initial Learning Rate

MNIST
SGD 0.1

Adam 0.0005
RMSProp 0.0005

FashionMNIST
SGD 0.1

Adam 0.0005
RMSProp 0.0005

CIFAR10
SGD 0.2

Adam 0.0002
RMSProp 0.0005

CIFAR100
SGD 0.3

Adam 0.0005
RMSProp 0.0005

SVHN
SGD 0.2

Adam 0.0002
RMSProp 0.0002

Caltech101
SGD 0.05

Adam 0.0002
RMSProp 0.001

Imagenette
SGD 0.1

Adam 0.0002
RMSProp 0.0002

Speech Commmands
SGD 0.1

Adam 0.1
RMSProp 0.1

Dataset Structure

MNIST
FashionMnist

Conv(1, 16, 4) - ReLU -
Conv(16, 32, 4) - ReLU -

FN(21632, 100) - FN(100, 10) - SM(10)

CIFAR10
CIFAR100

SVHN
Caltech101
Imagenette

PreActResNet18 (He et al., 2016)
ViT-B/16 (Dosovitskiy et al., 2021)

Speech Commands M5 (Dai et al., 2017)

Model architecture: For MNIST and FashionMNIST, we use a ReLU-activated, two-layer convolutional
neural network ending with two fully-connected layers. For CIFAR10, CIFAR100, SVHN, Caltech101, and
Imagenette, we use PreActResNet18 (He et al., 2016) and Vision Transformers (ViT-B/16) (Dosovitskiy
et al., 2021). For the Speech Commands dataset (Warden, 2018), we use the M5 network architecture
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defined by Dai et al. (2017). See Table 2 for details of all architectures used in this paper. We denote
Conv(i, o, k) as a convolution layer having i input channels, o output channels with k by k filters, FN(i, o)
as a fully-connect layer with i input channels and o output channels, and SM(o) as the soft-max layer with
o output. The stride for all convolution layers is 1. The main experiments in our work are centered around
models based on convolutional neural networks, within the computer vision domain. Additional results from
using ViT-B/16 and on the Speech Commands dataset can be found in Table 5 and Table 6, respectively.

Batch normalization: We concentrate on a particular aspect of the training process: the selection of
optimizers. Our aim is to shed light on how this critical component influences the robustness of trained
models. It has been recently shown that the use of batch normalization (BN) can also affect the robustness
of the model (Benz et al., 2021b;a; Wang et al., 2022). Consequently, to maintain focus on the impact of
optimizers, we have omitted BN in the training phase for the experiments leading to the results in Figure 1
and the analysis in Sec. 3. However, to show that our conclusions remain valid for models with BN, we have
included additional results that incorporate BN in Table 4.

C Results on Standard Generalization and Model Robustness

Main results: Table 3 summarizes the result on the standard generalization ability and robustness proper-
ties of the models trained by SGD, Adam, and RMSProp on seven vision datasets. All results are averaged
over three independently initialized and trained models. To evaluate standard generalization, we measure
the classification accuracy of the models on the testing data. To capture model robustness, we measure the
classification accuracy of the models on the testing data perturbed using Gaussian perturbations, ℓ2 and
ℓ∞-bounded perturbations (Croce & Hein, 2020). Perturbations with varying degrees of severity are included
in the evaluation to ensure the observation of the robustness difference is not limited to perturbations with
any particular parameters. The degree of severity is determined by the variance of the Gaussian perturbation
and an ℓ2 and ℓ∞ norm for the attacks. We select those parameters so the range of the accuracy differences
between models is similar across different datasets. Particularly, the highlighted results in Table 3 are in a
similar range, so we use them to plot Figure 1. We also ensure that the original image semantics remains in
the perturbed images, and we provide a visualization of the perturbed images in Figure 17 to 19.

Finally, for CIFAR100 and Caltech101, because of the large number of classes in the dataset, we use the
top-5 classification accuracy to plot Figure 1 as the results are within a range similar to other datasets with
10 classes. The observation of the similar standard generalization and different robustness holds on both
top-1 and top-5 accuracy.

C.1 Results on Models with Batch Normalization Enabled

When BN layers are activated in PreActResNet18, we observe that the models exhibit similar standard gen-
eralization performance, yet the robustness difference between SGD and adaptive gradient methods remains
evident. This observation is in line with the results presented in Table 3, where BN layers are disabled.
Notably, the accuracy of models with BN enabled is significantly lower compared to their BN-disabled coun-
terparts under almost all types of perturbations, particularly under stronger perturbations. This finding
aligns with the results from the previous work (Benz et al., 2021b;a; Wang et al., 2022).

C.2 Results on Vision Transformers

In addition to the network designs considered in Table 2, we extend our work to ViT in order to verify
whether similar observations can be drawn on other neural network architectures.

It is important to note that the dataset utilized in our paper is significantly smaller in size compared to
larger datasets such as Imagenet and JFT-300M. Recent research, such as the work by Zhu et al. (2023), has
shown that ViT tends to generalize poorly on small datasets when trained from scratch. In particular, Zhu
et al. (2023) empirically demonstrated that ViT and ResNet learn distinct representations on small datasets
while converging to similar representations on larger datasets.
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Table 3: Results on standard generalization and robustness of models trained by SGD, Adam,
and RMSProp. We evaluate the model robustness on the testing data perturbed using Gaussian perturba-
tions, ℓ2 and ℓ∞-bounded perturbations (Croce & Hein, 2020). We include various severity of perturbations
to better capture the model robustness. Models trained by SGD are the most robust against the three types
of perturbations across all datasets. The highlighted results are used in Figure 1, as they are in relatively
similar ranges. Results are averaged over three independently initialized and trained models.

Dataset Optimization Test Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack
σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 0.7 ϵ = 1.0 ϵ = 0.05 ϵ = 0.07 ϵ = 0.1

MNIST
SGD 98.72 98.59 97.94 95.64 93.00 87.33 66.33 87.53 71.93 31.50

Adam 99.05 98.86 96.76 89.33 92.33 86.00 54.67 85.40 52.93 8.77
RMSProp 98.90 98.70 97.02 90.63 91.67 83.00 50.00 82.73 50.00 7.33

σ2 = 0.001 σ2 = 0.005 σ2 = 0.01 ϵ = 0.1 ϵ = 0.5 ϵ = 0.7 ϵ = 0.01 ϵ = 0.03 ϵ = 0.05

FashionMNIST
SGD 91.20 90.49 87.78 84.30 82.33 24.33 12.33 67.23 22.30 4.17

Adam 90.98 89.91 85.03 78.91 70.33 6.00 0.33 53.57 5.33 0.00
RMSProp 91.15 90.09 85.23 78.69 72.67 15.93 4.67 62.67 16.33 1.67

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR10
SGD 90.16 87.35 74.13 68.66 67.40 37.57 16.30 53.93 21.27 0.93

Adam 90.73 86.93 67.50 58.54 64.03 29.60 11.10 50.57 13.93 0.20
RMSProp 90.46 86.25 70.03 61.52 60.10 25.47 8.87 47.87 14.03 0.33

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR100(top1)
SGD 59.76 56.88 46.26 41.28 28.47 12.93 5.90 18.80 5.57 1.17

Adam 61.10 55.30 31.54 24.92 24.30 7.13 1.87 14.43 2.47 0.33
RMSProp 60.36 56.46 36.42 29.50 28.90 10.47 2.83 17.90 3.47 0.20

CIFAR100(top5)
SGD 84.67 81.77 72.84 67.53 80.30 70.20 59.90 75.30 61.70 39.53

Adam 85.41 81.37 58.11 49.54 80.53 66.73 52.77 74.70 53.70 33.43
RMSProp 85.18 81.66 62.71 54.44 80.93 68.57 54.10 74.60 59.10 34.10

σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

SVHN
SGD 96.11 95.68 94.47 93.81 85.53 63.60 39.63 80.67 49.83 17.03

Adam 96.48 96.03 94.04 91.46 80.77 57.83 35.93 78.93 47.50 12.43
RMSProp 96.42 95.91 94.07 91.87 81.13 57.90 34.10 76.93 46.33 11.30

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Caltech101(top1)
SGD 70.80 68.13 57.67 43.46 58.77 47.03 35.17 48.27 27.87 4.70

Adam 72.32 58.34 19.88 8.55 57.70 44.47 29.60 45.47 22.03 2.63
RMSProp 73.82 69.38 51.34 33.17 37.80 11.30 2.80 14.77 1.93 0.03

Caltech101(top5)
SGD 85.96 84.84 77.57 67.16 85.30 84.43 79.00 83.97 75.47 52.27

Adam 88.08 79.48 38.55 19.67 82.03 80.67 77.63 83.97 72.07 45.87
RMSProp 88.37 85.90 72.19 52.74 80.20 63.40 45.93 63.97 41.33 23.90

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Imagenette
SGD 89.44 84.83 67.23 50.21 70.70 44.13 21.33 47.23 14.33 0.37

Adam 89.75 71.84 29.05 17.72 65.30 31.53 11.83 39.43 6.23 0.07
RMSProp 89.77 73.25 28.28 17.16 62.30 30.27 11.27 38.40 6.20 0.03

Therefore, we perform fine-tuning on a pre-trained ViT-B/16. Among the datasets we considered, Imagenette
is a 10-class subset of the Imagenet-1k dataset, making it especially suitable for the fine-tuning task, since
the publicly available ViT checkpoint was pre-trained on Imagenet-1k. Also, it is important to note that
the pretrained models were originally trained using Adam. In our fine-tuning process, we treat ViT as a
feature extractor (i.e., no weight update on the transformer encoder), with a focus on fine-tuning the Multi-
Layer Perceptrons (MLP) head. Our approach follows prior work (Steiner et al., 2022) and incorporates the
three different optimizers, each fine-tuned for 10 epochs. We initiated the fine-tuning process with an initial
learning rate of 0.01, followed by a cosine decay learning rate schedule and a linear warmup. Throughout
this process, we maintained a fixed batch size of 512.

To evaluate the robustness of the fine-tuned models, we maintained the exact same perturbation strengths,
including the variance of Gaussian noise and ϵ for adversarial perturbations, as used in Table 3. The results
can be found in Table 5. We draw three observations.
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Table 4: Results on standard generalization and robustness of models trained with BN enabled.
We follow the exact optimization configuration as the ones used in generating Table 3. The only modification
is that BN is enabled.

Dataset Optimization Test Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack
σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1

255 ϵ = 2
255 ϵ = 4

255

CIFAR10
SGD 92.24 86.91 55.23 43.29 64.84 27.86 6.96 48.64 9.14 0.04

Adam 93.38 85.67 50.41 39.11 56.5 15.96 2.63 37.7 3.8 0
RMSProp 93.57 86.97 52.09 39.86 55.93 15.16 2.23 37.7 3.76 0

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR100
SGD 72.24 57.99 26.08 19.23 34.36 10.2 3.63 21.3 4.8 0.2

Adam 71.36 55.85 24.55 18.23 27.56 6.66 1.73 15.26 2.9 0.23
RMSProp 70.99 56.13 24.56 18.03 23.8 5.1 1.1 13.7 2 0.1

σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

SVHN
SGD 94.16 95.81 94.96 92.90 81.73 60.56 41.96 76.13 49.26 15.3

Adam 96.62 96.09 93.96 91.19 80.13 47.76 21.86 72.36 32.76 4.36
RMSProp 96.44 94.86 93.75 91.02 79.86 48.43 22.16 72.36 33.7 3.96

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Caltech101
SGD 78.61 72.69 45.38 25.87 61.23 44.03 23.03 46.80 13.13 0.83

Adam 79.58 62.21 21.08 10.35 56.76 34.46 13.06 37.3 5.66 0.23
RMSProp 75.56 69.89 45.38 23.13 58.6 44.6 20.5 42.6 11.3 0.6

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Imagenette
SGD 89.35 76.67 46.18 28.27 73.43 42.96 17.56 48.93 14.33 0.03

Adam 91.88 67.29 24.30 14.92 67.66 24.06 3.06 31.4 6.23 0
RMSProp 91.93 67.02 23.79 15.43 68.76 26.1 4.1 33.66 6.20 0

Table 5: Results on standard generalization and robustness of ViT-B/16 fined-tuned on the
Imagenette dataset.

Model Optimization Test Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack
σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1

255 ϵ = 2
255 ϵ = 4

255

ViT-b/16
SGD 99.18 99.05 96.16 91.25 6.2 0 0 1.3 0 0

Adam 99.93 99.51 94.43 88.59 5.1 0 0 0.7 0 0
RMSProp 99.92 99.54 95.38 89.91 5 0 0 0.8 0 0

First, all models fine-tuned with the three different optimizers achieve near 100% test accuracy, a substantial
improvement from the 89% accuracy when training from scratch using PreActResNet18. This significant
boost in standard generalization highlights the effectiveness of fine-tuning with ViT. Second, we observe
that the fine-tuned models exhibit a notable increase in robustness to Gaussian noise. However, they are
highly vulnerable to adversarial perturbations. This observation is consistent with the results from existing
literature (Zhang et al., 2019), where a trade-off is often present between standard accuracy and adversarial
robustness. Finally, we make a similar observation on the robustness difference between models fine-tuned
with the three optimizers, where models fine-tuned with SGD exhibited greater robustness to both Gaussian
noise and adversarial perturbations when compared to models fine-tuned using Adam and RMSProp.

C.3 Results with an Audio Dataset

Besides the vision domain, we extend our work to the audio domain since audio signals offer a frequency-based
interpretation as well. We include additional results in Table 6, which compare the standard generalization
and robustness properties of an audio classifier trained on the Speech Commands dataset (Warden, 2018). We
focus on the PreActResNet18 architectures and all models are trained for 200 epochs, with an initial learning
rate of 0.1 and learning rate decay by a factor of 0.1 at epoch 100 and 150. We consider the accuracy of
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Table 6: Results on standard generalization and robustness of models on an audio classification
task on the Speech Commands dataset.

Dataset Optimization Test Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack
σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.01 ϵ = 0.05 ϵ = 0.1 ϵ = 0.0001 ϵ = 0.0005 ϵ = 0.001

Speech
Commands

SGD 85.14 55.76 39.88 33.42 70.01 20.31 9.81 75.6 36.71 13.47
Adam 85.47 54.73 38.87 31.95 60.74 17.87 8.49 71.97 29.2 10.15

RMSProp 84.67 52.37 36.59 27.94 59.57 19.04 8.88 70.50 30.95 11.01

Table 7: Results on standard generalization and robustness of models trained by SGD without
and with momentum (0.9).

Dataset Optimization Test Gaussian perturbations ℓ2-bounded attack ℓ∞-bounded attack
σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1

255 ϵ = 2
255 ϵ = 4

255

CIFAR10 SGD 90.16 87.35 74.13 68.66 67.40 37.57 16.30 53.93 21.27 0.93
SGD-m 89.79 87.28 73.207 66.783 67.1 38.067 15.9 55.667 20.233 0.6333

σ2 = 0.001 σ2 = 0.005 σ2 = 0.007 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

CIFAR100 SGD 59.76 56.88 46.26 41.28 28.47 12.93 5.90 18.80 5.57 1.17
SGD-m 56.08 55.03 44.97 40.03 29.2 12.4 5.7 19.7 6.5 0.8

σ2 = 0.001 σ2 = 0.003 σ2 = 0.005 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

SVHN SGD 96.11 95.68 94.47 93.81 85.53 63.60 39.63 80.67 49.83 17.03
SGD-m 96.14 95.71 94.44 92.80 82.7 60.53 39.03 77.33 49.26 15.96

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Caltech101 SGD 70.80 68.13 57.67 43.46 58.77 47.03 35.17 48.27 27.87 4.70
SGD-m 69.89 67.77 55.77 41.34 54.86 43.36 31.06 44.16 23.9 3.133

σ2 = 0.01 σ2 = 0.05 σ2 = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 1
255 ϵ = 2

255 ϵ = 4
255

Imagenette SGD 89.44 84.83 67.23 50.21 70.70 44.13 21.33 47.23 14.33 0.37
SGD-m 88.69 85.05 68.58 51.15 75.53 49.2 24.53 56.43 17.76 0.2

models under Gaussian- and adversarially-perturbed test sets. Manual verification was conducted to ensure
that the noisy audio phrase could still be recognizable.

Results demonstrate that despite similar test accuracy, the models trained using SGD exhibit greater robust-
ness when compared to the other two optimization methods. These insights provide valuable context to the
generalizability of our initial observations, offering a more comprehensive understanding of how optimizers
perform in the context of different data modalities.

C.4 Results with Momentum-enabled SGD

Additional results with momentum-enabled SGD (SGD-m) are included in Table 7. We maintain the exact
same optimization configuration as that is used for generating the SGD results presented in Table 3, and the
only variation is an additional momentum term with a coefficient of β = 0.9. The result shows that models
optimized by both vanilla SGD and SGD-m exhibit similar trends in terms of generalization and robustness.

D Modifying the Training Inputs in Sec.3.1

We demonstrate irrelevant frequencies in two settings: i) DCT basis vectors with a low magnitude are
irrelevant and ii) high-frequency DCT bases are irrelevant. In Figure 9 to 15, we visualize the original
images and the modified images used in Sec. 3.1.

To understand how the modified training images are generated, we use Φnrg(x, p) with 0 < p < 100 to denote
the operation that modifies the input image x by removing the DCT basis vectors whose magnitudes are in
the bottom p

100 -th percentile. We use Mnrg(x, p) to denote the binary mask used in the process. Consider
an image x ∈ Rd×d, the entire process can be formulated as

Φnrg(x, p) = C(x̃⊙Mnrg(x, p))C⊤,
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Table 8: Examples of the synthetic data distribution in the frequency and the spatial domain.

Σ̃ Frequency-domain Representation Spatial-domain Representation
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where ⊙ is the element-wise product and C is the DCT transformation matrix. The binary mask Mnrg ∈
{0, 1}d×d is defined as

Mnrg(x, p) =
{

1 if |x̃i,j | > ϕ(x̃, p)
0 otherwise,

where ϕ(x̃, p) ∈ R computes the p
100 -th percentile in |x̃|. Therefore, DCT basis vectors with a magnitude

smaller than the threshold are first discarded in x̃, and then this filtered x̃ is converted back to the spatial
domain.

Similarly, we use Φfreq(x, p) to denote the operation that modifies the input image x by removing the DCT
basis vectors whose frequency are in the highest p

100 -th percentile. We use Mfreq(p) to denote the binary
mask used in the process. This operation can be formulated as

Φfreq(x, p) = C(x̃⊙Mfreq(p))C⊤,

where Mfreq ∈ {0, 1}d×d is defined as:

Mfreq(p) =
{

1 if i2 + j2 > p
100
√

2d
0 otherwise,

and i, j are frequency bases. Notice that Mfreq only depends on the size of the image, whereas Mnrg depends
on the input x since we identify the threshold value in |x̃|. Examples of the modified images and the
modification process are shown in Appendix G.

E Linear Regression Analysis

E.1 Understanding the Synthetic Dataset

The goal of the linear analysis is to study the learning dynamics of different algorithms on a synthetic dataset
where one can clearly define the frequency-domain signal-target (ir)relevance. This motivates us to directly
define the distribution of the input signal in the frequency domain. In Sec. 4, we consider X̃ follows a
Gaussian distribution N (µ̃, Σ̃), and for analytical tractability, we consider µ̃ = 0 and a diagonal structure of
Σ̃, i.e., Σ̃ = diag(σ̃2

0 , ..., σ̃2
d−1). Admittedly, it is quite unconventional to define the data distribution directly

in the frequency domain, so we provide a few examples in Table 8 to illustrate the structure of the input
data in both representations.

Similar to Sec. 4.2.2, we focus on a low dimensional setting with d = 3. The first six rows in Table 8 represent
the scenario when there are zero variances in Σ̃. Notice the notion of irrelevant information in the data is
different in the two representations. In the frequency domain, an irrelevant frequency indicates that the data
has a value of zero at the particular frequency. In the spatial domain, having irrelevant frequency means
that there are redundant dimensions in the spatial representation of the data because the value of data at
some dimensions can be fully predictable by knowing the values of data at some other dimensions.
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E.2 Derivation of Equation 9

The adversarial risk under an ℓ2-norm bounded perturbation with a size of ϵ is

Ra(w̃) ≜ E(X̃,Y )

[
max

||∆x̃||2≤ϵ
ℓ(X̃ + ∆x̃, Y ; w̃)

]
= E(X̃,Y )

[
max

||∆x̃||2≤ϵ

1
2

∣∣f(X̃ + ∆x̃, w̃)− Y
∣∣2

]
= EX̃

[
max

||∆x̃||2≤ϵ

1
2

∣∣〈 X̃ + ∆x̃ , w̃
〉
−

〈
X̃ , w̃∗ 〉∣∣2

]
= EX̃

[
max

||∆x̃||2≤ϵ

1
2

∣∣〈 X̃ , w̃ − w̃∗ 〉
+ ⟨∆x̃ , w̃ ⟩

∣∣2
]
,

where we focus on the expectation over X̃, as Y is replaced with
〈

X̃ , w̃∗ 〉
.

E.3 Derivation of Equation 10

Given a r.v. X̃, we define ∆x̃∗ to be the maximizer of the term inside the expectation of (9):

∆x̃∗ ≜ arg max
||∆x̃||2≤ϵ

1
2

∣∣〈 X̃ , w̃ − w̃∗ 〉
+ ⟨∆x̃ , w̃ ⟩

∣∣2
.

To maximize this term, we need the two inner product terms to have the same sign. This means

∆x̃∗ = sign[
〈

X̃ , w̃ − w̃∗ 〉
]arg max
||∆x̃||2≤ϵ

|⟨∆x̃ , w̃ ⟩|2 .

For the remaining argmax term, we can first use the Cauchy-Schwarz inequality to obtain

max
||∆x̃||2≤ϵ

|⟨∆x̃ , w̃ ⟩|2 ≤ max
||∆x̃||2≤ϵ

∥∆x̃∥2
2 ∥w̃∥

2
2 = ϵ2 ∥w̃∥2

2 ,

which leads to
arg max
||∆x̃||2≤ϵ

|⟨∆x̃ , w̃ ⟩|2 = ϵ
w̃

∥w̃∥2
.

Finally, we have
∆x̃∗ = ϵ sign[

〈
X̃ , w̃ − w̃∗ 〉

] w̃

||w̃||2
.

E.4 Derivation of Equation 11

The adversarial risk is

Ra(w̃) = 1
2EX̃

[∣∣〈 X̃ , w̃ − w̃∗ 〉
+ ϵ sign[

〈
X̃ , w̃ − w̃∗ 〉

]||w̃||2
∣∣2

]
= 1

2EX̃

[〈
X̃ , w̃ − w̃∗ 〉2 + 2ϵ

∣∣〈 X̃ , w̃ − w̃∗ 〉∣∣ ||w̃||2 + ϵ2||w̃||22
]

= 1
2

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i )2 + ϵEX̃

[∣∣〈 X̃ , w̃ − w̃∗ 〉∣∣]||w̃||2 + ϵ2

2 ||w̃||
2
2.

To compute the expectation, we first denote Z =
∑

i∈Irel
X̃i(w̃i − w̃∗

i ). Because σ̃2
i = 0 for all i ∈ Iirrel, this

allows us to ignore those irrelevant frequencies in the summation in Z. This leads us to

EX̃

[∣∣〈 X̃ , w̃ − w̃∗ 〉∣∣] = EZ

[
|Z|

]
.
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Since Z is a linear combination of zero-mean Gaussian r.v.’s, this makes it also a zero-mean Gaussian r.v,
i.e., E[Z] = 0. The variance of Z is

σ2
Z = E[Z2]− E[Z]2

= E
[ ∑

i∈Irel

∑
j∈Irel,i̸=j

[
X̃iX̃j(w̃i − w̃∗

i )(w̃j − w̃∗
j )

]
+

∑
i∈Irel

[
X̃2

i (w̃i − w̃∗
i )2

]]

= E
[ ∑

i∈Irel

[
X̃2

i (w̃i − w̃∗
i )2

]]
=

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i )2,

where the expectation on the cross-multiplication term is zero because X̃i and X̃j are independent r.v.’s.

This means Z ∼ N (0, σ2
Z) with σ2

Z =
∑

i∈Irel
σ̃2

i (w̃i− w̃∗
i )2. Therefore, EZ

[
|Z|

]
is the expectation of a folded

normal distribution:

EZ

[
|Z|

]
= σZ

√
2
π

=
√

2
π

∑
i∈Irel

σ̃2
i (w̃i − w̃∗

i )2.

E.5 Derivations of the GD Dynamics: Equation 14 and Equation 15

The gradient computed using the population risk is ∇wRs(w(t)) = E
[
XX⊤]

e(t) = Σe(t), and the learning
dynamics of GD in the spatial domain can be captured using:

e(t + 1) = w(t + 1)− w∗

= w(t)− η∇wRs(w(t))− w∗

= w(t)− w∗ − ηΣe(t)
= e(t)− ηΣe(t)
= (I − ηΣ)e(t)
= (I − ηΣ)t+1e(0).

This shows that the learned weight converges to the optimal weight w∗ at a rate depending on Σ. To see
the GD dynamics in the frequency domain, we can simply perform DCT on both sides of (14):

ẽ(t + 1) = C(I − ηΣ)t+1e(0)
= C(I − ηΣ)t+1C⊤ẽ(0)
= C(I − ηΣ)tC⊤C(I − ηΣ)C⊤ẽ(0)
= C(I − ηΣ)t−1C⊤C(I − ηΣ)C⊤C(I − ηΣ)C⊤ẽ(0)

=
[
C(I − ηΣ)C⊤]t+1

ẽ(0)
= (I − ηCΣC⊤)t+1ẽ(0)
= (I − ηΣ̃)t+1ẽ(0),

where Σ̃ is the covariance of x̃.

E.6 Derivation of the signGD Dynamics for any Σ̃: Equation 19 and Equation 20

The signGD learning dynamics in the spatial domain is

e(t + 1) = w(t + 1)− w∗

= w(t)− η sign[∇wRs(w)]− w∗

= e(t)− η sign[Σe(t)].
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The signGD learning dynamics in the frequency domain are obtained by taking the DCT transformation on
both sides of (19):

ẽ(t + 1) = ẽ(t)− ηC sign[Σe(t)]
= ẽ(t)− ηC sign[C⊤Σ̃CC⊤ẽ(t)]
= ẽ(t)− ηC sign[C⊤Σ̃ẽ(t)].

E.7 Derivation of the signGD Dynamics for Σ̃ = diag
{

σ̃2
0 , σ̃2

1 , 0
}

: Equation 21

To understand ẽ(t + 1) with our specific choice of Σ = C⊤Σ̃C and Σ̃ = diag
{

σ̃2
0 , σ̃2

1 , 0
}

, first notice that the
DCT transformation matrix C = C(3) follows the definition in (4):

C =


√

1
3

√
1
3

√
1
3√

2
3 cos π

6

√
2
3 cos π

2

√
2
3 cos 5π

6√
2
3 cos π

3

√
2
3 cos π

√
2
3 cos 5π

3

 =


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6

 .

Denote
√

1
3 σ̃2

0 ẽ0(t) and
√

1
2 σ̃2

1 ẽ1(t) by using A(t) and B(t), respectively. Putting it all together, we have:

ẽ(t + 1) = ẽ(t)− ηC sign[C⊤Σ̃Ce(t)]
= ẽ(t)− ηC sign[C⊤Σ̃ẽ(t)]

= ẽ(t)− η


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6

 sign




√
1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6


⊤ 

σ̃2
0 ẽ0(t)

σ̃2
1 ẽ1(t)

0




= ẽ(t)− η


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6




sign
[√

1
3 σ̃2

0 ẽ0(t) +
√

1
2 σ̃2

1 ẽ1(t)
]

sign
[√

1
3 σ̃2

0 ẽ0(t)
]

sign
[√

1
3 σ̃2

0 ẽ0(t)−
√

1
2 σ̃2

1 ẽ1(t)
]


= ẽ(t)− η


√

1
3

√
1
3

√
1
3√

1
2 0 −

√
1
2√

1
6 −

√
2
3

√
1
6




sign[A(t) + B(t)]

sign[A(t)]

sign[A(t)−B(t)]


= ẽ(t)− η


√

3
3 (sign[A(t) + B(t)] + sign[A(t)] + sign[A(t)−B(t)])√

2
2 (sign[A(t) + B(t)]− sign[A(t)−B(t)])√

6
6 sign[A(t) + B(t)]−

√
6

3 sign[A(t)] +
√

6
6 sign[A(t)−B(t)]

 .

E.8 Understanding the Dynamics of signGD with Σ̃ = diag
{

σ̃2
0 , σ̃2

1 , 0
}

Previous work has shown that for strictly convex problems with a unique minimum, the signGD solution
converges to the minimum under a sequence of decaying learning rate: limt→∞ η(t) = 0 (Moulay et al., 2019).
In this section, we follow Sec. 4.2.1 where the GD dynamics is studied under a constant learning rate and
investigate the behavior of signGD under a fixed η. Compared to the asymptotic GD solution that converges
exactly to the standard risk minimizer, we demonstrate that the asymptotic signGD solution converges to
an O(η) neighborhood of the standard risk minimizer.

For the rest of this section, we first perform a partition-based analysis to study the learning dynamics of ẽ0
and ẽ1 in Appx. E.8.1. Proposition E.4 summarizes how the value of weight changes in different partitions,
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Table 9: Learning dynamics of signGD. The dynamics of the error term in the frequency domain can be
written in a tabular format and the exact update depends on the initialized weight w̃(0) and the true model
w̃∗. We use A(t) and B(t) to denote

√
3

3 σ̃2
0 ẽ0(t) and

√
2

2 σ̃2
1 ẽ1(t), respectively. Invalid sign combinations are

denoted by using n/a.

No. sign[A(t)] sign[A(t) + B(t)] sign[A(t) − B(t)] ẽ(t + 1) |A(t)| vs. |B(t)|

1 1 1 1 ẽ(t) − η
[√

3, 0, 0
]⊤

|A(t)| > |B(t)|

2 1 1 −1 ẽ(t) − η
[ √

3
3 ,

√
2, −

√
6

3

]⊤
|A(t)| < |B(t)|

3 1 1 0 ẽ(t) − η
[

2
√

3
3 ,

√
2

2 , −
√

6
6

]⊤
|A(t)| = |B(t)|

4 1 −1 1 ẽ(t) − η
[ √

3
3 , −

√
2, −

√
6

3

]⊤
|A(t)| < |B(t)|

n/a 1 −1 −1 n/a n/a
n/a 1 −1 0 n/a n/a

5 1 0 1 ẽ(t) − η
[

2
√

3
3 , −

√
2

2 , −
√

6
6

]⊤
|A(t)| = |B(t)|

n/a 1 0 −1 n/a n/a
n/a 1 0 0 n/a n/a

n/a −1 1 1 n/a n/a

6 −1 1 −1 ẽ(t) − η
[

−
√

3
3 ,

√
2,

√
6

3

]⊤
|A(t)| < |B(t)|

n/a −1 1 0 n/a n/a

7 −1 −1 1 ẽ(t) − η
[

−
√

3
3 , −

√
2,

√
6

3

]⊤
|A(t)| < |B(t)|

8 −1 −1 −1 ẽ(t) − η
[

−
√

3, 0, 0
]⊤

|A(t)| > |B(t)|

9 −1 −1 0 ẽ(t) − η
[

− 2
√

3
3 , −

√
2

2 ,
√

6
6

]⊤
|A(t)| = |B(t)|

n/a −1 0 1 n/a n/a

10 −1 0 −1 ẽ(t) − η
[

− 2
√

3
3 ,

√
2

2 ,
√

6
6

]⊤
|A(t)| = |B(t)|

n/a −1 0 0 n/a n/a

n/a 0 1 1 n/a n/a

11 0 1 −1 ẽ(t) − η
[

0,
√

2, 0
]⊤

|A(t)| < |B(t)|

n/a 0 1 0 n/a n/a

12 0 −1 1 ẽ(t) − η
[

0, −
√

2, 0
]⊤

|A(t)| < |B(t)|

n/a 0 −1 −1 n/a n/a
n/a 0 −1 0 n/a n/a

n/a 0 0 1 n/a n/a
n/a 0 0 −1 n/a n/a
13 0 0 0 Optimal |A(t)| = |B(t)| = 0

and the weight adaptation of ẽ0 and ẽ1 is summarized in Corollary E.6. Based on the corollary, we analyze
the dynamics of ẽ2 in Appx. E.8.2. Lastly, we focus on the differences between the adversarial risk of solutions
found by GD and signGD in Appx. E.8.3.

E.8.1 Dynamics of ẽ0 and ẽ1 under signGD

With our choice of Σ̃, (21) shows that weight adaptation depends on the sign of three terms: A(t), A(t)+B(t)
and A(t)− B(t). This allows us to study the learning dynamics of signGD by analyzing the three terms in
Table 9. There are 27 sign combinations in total; however, not all of them are valid. For example, consider
the combination with sign[A(t)] = 1, sign[A(t) + B(t)] = −1. Those two conditions imply that B(t) < 0
and |A(t)| < |B(t)|, and this means that sign[A(t) − B(t)] must be positive. This makes the entry with
sign[A(t) − B(t)] = −1 invalid, as shown in the fifth row in Table 9. We denote those entries with invalid
sign combinations as n/a.

Notice in (21) that the weight adaptation under signGD depends on the dynamics of A(t) and B(t), and
they are functions of ẽ0(t) and ẽ1(t) respectively, so let us first focus on understanding the weight adaptation
at the first two frequency bases.
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There are 13 possible updates in Table 9. Notice that the non-zero updates are always in the direction to
reduce |ẽ0(t)| and |ẽ1(t)|, and the step size depends on the magnitude of |A(t)| and |B(t)|. To simplify the
analysis, let us focus on the updates on A and B instead. For example, in updates 1 and 8, decreasing |ẽ0|
by
√

3η is equivalent to decreasing |A| by σ̃2
0η.

Now take note of the limited number of update magnitudes for |A|, specifically σ̃2
0η, 2σ̃2

0η
3 , and σ̃2

0η
3 , which

correspond to updating |ẽ0| by
√

3η, 2
√

3
3 η, and

√
3

3 η, respectively. Similarly, |B| has only two update
magnitudes, namely σ̃2

1η and σ̃2
1η
2 , which correspond to updating |ẽ1| with

√
2η and

√
2

2 η, respectively. This
observation leads to the following proposition.
Proposition E.1. Suppose the initial weight w(0) ∼ µ are sampled from probability density µ, then neither
A nor B (ẽ0 nor ẽ1) can be reduced to exactly 0 almost surely.

Proof. Due to the limited number of update magnitudes, reducing |A| and |B| to 0 requires their initial value
to be exactly some integer multiplication of those updates. However, with the initial weight sampled from
probability density µ, the probability of the initial values of A and B being the exact integer multiple of the
possible update is 0.

Next, we introduce the following lemma to understand the dynamics of A(t).
Lemma E.2. Consider the update rule x(t + 1) = x(t) − sign[x(t)]∆(t), where x ∈ R,
∆(t) ∈ {∆1, ∆2, . . . , ∆max} and 0 < ∆1 < ∆2 < · · · < ∆max. Then there exists t such that |x(t)| ≤ ∆max.
Moreover, whenever |x(t)| ≤ ∆max, the rest of the sequence stays ∆max-bounded, i.e., |x(t′)| ≤ ∆max for all
t′ ≥ t.

Proof. In the following, we provide a proof for the case when x(0) > 0. A proof with x(0) < 0 can be done
in a similar way. The proof can be divided into two parts.

1. Let us denote the sequence of {x(0), x(1), . . . , x(t)} by {x(t)}. First, we prove that there exists a t such
that |x(t)| ≤ ∆max.

If x(t) > ∆max, then x(t + 1) = x(t)−∆(t) ≥ x(t)−∆max > 0.

Consider {x(t)} with x(t′) > ∆max for all t′ ∈ {0, 1, . . . , t}, we have x(t′ + 1) = x(t′)−∆(t′) < x(t′). This
means that for any x(t) > ∆max, the sequence {x(t)} is decreasing.

We prove, by contradiction, that there exists a t such that |x(t)| < ∆max. Suppose that such a t does not
exist, then one of the two cases must happen.

1. x(t) > ∆max for all t.

2. ∃k such that x(0) > x(1) > · · · > x(k) > ∆max, but x(k + 1) < −∆max.

For case 1, since x(t) > ∆max, we know that {x(t)} is decreasing and bounded from below, so we have
x(t)→ x∗ ≥ ∆max as t→∞. This means that limt→∞ x(t) = limt→∞ x(t + 1) = x∗.

Using the update rule, we have

lim
t→∞

x(t + 1) = lim
t→∞

x(t)−∆(t) sign(x(t))

= lim
t→∞

x(t)−∆(t)

= x∗ −∆(t),

or x∗ = x∗ −∆(t), which is impossible because ∆(t) > 0.

For case 2, by the assumption of the case, we have x(k + 1) = x(k)−∆(k) < −∆max, which is not possible
because x(k) > ∆max.

The same approach can be applied to prove the case when x is initialized with a negative value, i.e., x(0) < 0.
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The first part of the proof shows that there exists a t such that |x(t)| ≤ ∆max.

2. Next, we show that for any t such that |x(t)| ≤ ∆max, we have |x(t + 1)| ≤ ∆max.

When 0 ≤ x(t) ≤ ∆max, we have

x(t + 1) = x(t)−∆(t) ≥ −∆max and x(t + 1) = x(t)−∆(t) ≤ x(t) ≤ ∆max.

When −∆max ≤ x(t) ≤ 0, we have

x(t + 1) = x(t) + ∆(t) ≤ ∆max and x(t + 1) = x(t) + ∆(t) ≥ x(t) ≥ −∆max.

This means that −∆max ≤ x(t + 1) ≤ ∆max, and this results holds for any t such that |x(t)| ≤ ∆max.

To combine the two parts of the proof, consider the first of such t, i.e., t = min { t : |x(t)| ≤ ∆max }. We can
prove, by mathematical induction, that |x(t′)| ≤ ∆max for all t′ ≥ t.

The following proposition describes the behavior of A(t) under signGD.
Proposition E.3. There exists t such that |A(t′)| ≤ σ̃2

0η for all t′ > t.

Proof. Table 9 shows that there is always a non-zero update in the direction to reduce |A(t)|, so we can
define the dynamics of A(t) as

A(t + 1) = A(t)− sign[A(t)]∆(t),

where ∆(t) ∈
{

σ̃2
0η
3 ,

2σ̃2
0η

3 , σ̃2
0η

}
. Lemma E.2 with ∆max = σ̃2

0η proves the proposition.

Proposition E.3 implies that once |A| drops below σ̃2
0η, it remains below σ̃2

0η for all future iterations. Com-
bining Proposition E.3 with the update directions of A in Table 9, we know that A will begin oscillating
around zero. However, there are some limitations of Proposition E.3. First, we do not know when exactly
the oscillation starts: whether it starts immediately following the first iteration when |A| ≤ σ̃2

0η or from
some iterations after it. Second, the characteristics of this oscillation (periodic or non-periodic) are un-
known. Answers to these questions can improve our understanding of the behavior of A, and later become
particularly useful in developing the asymptotic signGD solution of ẽ2, which is important because it leads
to the adversarial risk of the signGD solution.

Because the update for B(t) can be zero when |A(t)| > |B(t)|, Lemma E.2 is not suitable to understand the
dynamics of B, as the lemma requires that all step sizes be greater than zero. Nevertheless, Proposition E.3
allows us to narrow down the range of A and we can partition the set of all possible values of A and B.
By analyzing the dynamics of A and B in those partitions, we can develop the standard and adversarial
population risk of the asymptotic signGD solution under a constant learning rate η.

Let us first divide the set of values of (A, B) into partitions based on the value of |A|, and then divide those
partitions into smaller subpartitions based on the relative magnitude of |A| and |B|. Such a partitioning
process is illustrated in Figure 6.

• R1 =
{

(A, B) : 2σ̃2
0η

3 < |A| < σ̃2
0η and B ∈ (−∞,∞)

}
,

– R11 = { (A, B) : (A, B) ∈ R1 and |A| < |B| },
– R12 = { (A, B) : (A, B) ∈ R1 and |A| > |B| },

• R2 =
{

(A, B) : σ̃2
0η
3 < |A| < 2σ̃2

0η
3 and B ∈ (−∞,∞)

}
,

– R21 = { (A, B) : (A, B) ∈ R2 and |A| < |B| },
– R22 =

{
(A, B) : (A, B) ∈ R2 and |A| > |B| and

∣∣A + σ̃2
0η

∣∣ > |B| and
∣∣A− σ̃2

0η
∣∣ > |B|

}
,

– R23 =
{

(A, B) : (A, B) ∈ R2 and |A| > |B| and
(∣∣A + σ̃2

0η
∣∣ < |B| or

∣∣A− σ̃2
0η

∣∣ < |B|
) }

,
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Figure 6: Analyzing the dynamics of A and B by partitioning the set of values of (A, B) in
[−σ̃2

0η, σ̃2
0η]× R. Such a set is first divided into partitions R1, R2 and R3 based on the value of |A|. Then,

we consider Rs = {R22, R31, R32, R33, R34} as the stationary subpartitions, because once (A(t), B(t)) ∈ Rs,
the sequence remains in the stationary subpartitions. Also, we consider Rt = {R11, R12, R21, R23} as the
transient subpartitions, because any (A(t), B(t)) ∈ Rt will soon enter one of the stationary subpartitions,
that is, there exists t′ ≥ t such that (A(t′), B(t′)) ∈ Rs. We consider σ̃2

0 = σ̃2
1 = 1 and η = 1 in this figure.

• R3 =
{

(A, B) : |A| < σ̃2
0η
3 and B ∈ (−∞,∞)

}
,

– R31 = { (A, B) : (A, B) ∈ R3 and |A| > |B| },

– R32 =
{

(A, B) :
⋃

k∈Zeven−{0}
{

(A, B) ∈ R3 and |A| >
∣∣B + kσ̃2

1η
∣∣} }

,

– R33 =
{

(A, B) :
⋃

k∈Zodd

{
(A, B) ∈ R3 and |A|+

∣∣B + kσ̃2
1η

∣∣ <
σ̃2

0η
3

} }
,

– R34 = R3 − (R31 ∪R32 ∪R33),

where Zodd and Zeven are the set of odd and even integers, respectively.

There are nine non-overlapping subpartitions. We call R22, R31, R32, R33 and R34 the stationary subpar-
titions and denote Rs = {R22, R31, R32, R33, R34}. They are called stationary subpartitions because once
(A(t), B(t)) ∈ Rs, the sequence remains in the stationary subpartition. On the other hand, we call R11, R12,
R21, R23 the transient subpartitions and denote Rt = {R11, R12, R21, R23}. They are called the transient
subpartitions because any (A(t), B(t)) ∈ Rt will soon enter one of the stationary subpartitions, that is, there
exists t′ ≥ t such that (A(t′), B(t′)) ∈ Rt. The dynamics of A and B can be summarized in the following
proposition.
Proposition E.4.
Transient subpartitions: For each of R ∈ Rt, consider t such that (A(t), B(t)) ∈ R, then there exists
t′ > t such that (A(t′), B(t′)) ∈ Rs. The transition of (A(t), B(t)) from Rt to Rs happens at most 3
iterations after t; specifically, it corresponds to the scenario of (A(t), B(t)) ∈ R11, (A(t+1), B(t+1)) ∈ R23,
(A(t + 2), B(t + 2)) ∈ R21, and finally (A(t + 3), B(t + 3)) ∈ R3.

Stationary subpartitions: For each of R ∈ Rs, consider t such that (A(t), B(t)) ∈ R. For any t′ ≥ t,
|A(t′)| ≤ 2σ̃2

0η
3 and A(t′) shows 2-periodic behavior switching between positive and negative signs, that is, for

any i ∈ Z≥0, we have A(t + 2i) = A(t) and sign(A(t + 2i)) = sign(A(t)) = − sign(A(t + 2i + 1)). To be more
specific about each stationary subpartition, we have
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1. For each of R ∈ {R22, R31}, consider t such that (A(t), B(t)) ∈ R. For any t′ ≥ t, |B(t′)| ≤ σ̃2
1η

and B(t′) remains constant, that is, B(t′) = B(t).

2. For each of R ∈ {R32, R33}, consider t such that (A(t), B(t)) ∈ R.

(a) There exists t̄ > t such that (A(t̄), B(t̄)) ∈ R31. Denote the smallest t̄ as t̄∗.
(b) For any t̄∗ > t′ ≥ t, we have |B(t′ + 1)| = |B(t′)| − sign[B(t′)].
(c) For any t′ ≥ t̄∗, |B(t′)| ≤ σ̃2

1η and B(t′) remains constant, that is, B(t′) = B(t).

3. Consider t such that (A(t), B(t)) ∈ R34.

(a) For any t′ ≥ t, (A(t′), B(t′)) remains in R34.
(b) There exists t̄ > t such that for any t̄ > t′ ≥ t, the sign of B(t′) remains constant.
(c) For any t′ ≥ t̄, |B(t′)| ≤ σ̃2

1η and B(t′) shows 2-periodic behavior switching between
positive and negative signs, that is, for any i ∈ Z≥0, we have B(t̄ + 2i) = B(t̄) and
sign(B(t̄ + 2i)) = sign(B(t̄)) = − sign(B(t̄ + 2i + 1)).

Proof. From Proposition E.3, we know that from an arbitrary (A(0), B(0)), |A| will drop below σ̃2
0η under

the signGD update, which means that (A, B) must enter one of the subpartitions. This allows us to continue
analyzing the behavior of (A(t), B(t)) by assuming it enters one of the subpartitions at iteration t.

Analysis of R11: For any (A(t), B(t)) in R11, we know that A(t + 1) = A(t) − sign[A(t)] σ̃2
0η
3 . This means

that σ̃2
0η
3 < |A(t + 1)| < 2σ̃2

0η
3 , so (A(t + 1), B(t + 1)) is in R2 and we can study its dynamics using R2.

Analysis of R12: For any (A(t), B(t)) in R12, we know that A(t + 1) = A(t) − sign[A(t)]σ̃2
0η. This means

that |A(t + 1)| < σ̃2
0η
3 . Therefore, (A(t + 1), B(t + 1)) is in R3 and we can analyze its dynamics using R3.

Analysis of R21: For any (A(t), B(t)) in R21, we know that A(t + 1) = A(t) − sign[A(t)] σ̃2
0η
3 . This means

that |A(t + 1)| < σ̃2
0η
3 . Therefore, (A(t + 1), B(t + 1)) is in R3 and we can analyze its dynamics using R3.

Dynamics of (A, B) in R22 and R23: For any (A(t), B(t)) in R22 and R23, we have A(t + 1) = A(t) −
sign[A(t)]σ̃2

0η and B(t + 1) = B(t), so we know that σ̃2
0η
3 < |A(t + 1)| < 2σ̃2

0η
3 .

Analysis of R22: For any (A(t), B(t)) in R22, we have |A(t + 1)| > |B(t + 1)|. This means that
(A(t + 1), B(t + 1)) remains in R22, and we have A(t+2) = A(t+1)−sign[A(t+1)]σ̃2

0η and B(t+2) = B(t+1),
which means that (A(t + 2), B(t + 2)) returns to the starting position at (A(t), B(t)). In fact, for any t′ ≥ t,
A(t′) shows 2-periodic behavior switching between positive and negative signs and B(t′) remains constant,
that is, for any i ∈ Z≥0, we have A(t + 2i) = A(t), sign(A(t + 2i)) = sign(A(t)) = − sign(A(t + 2i + 1)), and
B(t + 2i + 1) = B(t + 2i) = B(t).

Analysis of R23: For any (A(t), B(t)) in R23, by the definition of subpartition, we have that
|A(t + 1)| < |B(t + 1)|, so (A(t + 1), B(t + 1)) is in R21. This means that (A(t + 2), B(t + 2)) is in R3
and we can analyze its dynamics using partition R3.

Analysis of R31: For any (A(t), B(t)) in R31, we know that A(t + 1) = A(t) − sign[A(t)]σ̃2
0η and

B(t + 1) = B(t). This means that 2σ̃2
0η

3 < |A(t + 1)| < σ̃2
0η. Since |A(t + 1)| > |B(t + 1)| = |B(t)|, we have

that B(t + 2) = B(t + 1) and A(t + 2) = A(t + 1)− sign[A(t + 1)]σ̃2
0η, which means that (A(t + 2), B(t + 2))

returns to the starting position at (A(t), B(t)). Therefore, for any t′ ≥ t, A(t′) shows 2-periodic behavior
switching between positive and negative signs and B(t′) remains constant, that is, for any i ∈ Z≥0, we have
A(t + 2i) = A(t), sign(A(t + 2i)) = sign(A(t)) = − sign(A(t + 2i + 1)), and B(t + 2i + 1) = B(t + 2i) = B(t).

Dynamics of A in R32, R33 and R34: The behavior of A in R32, R33 and R34 is the same. For any
(A(t), B(t)) in {R32, R33, R34}, we know that

A(t + 1) = A(t)− sign[A(t)] σ̃
2
0η

3 and B(t + 1) = B(t)− sign[B(t)]σ̃2
1η. (32)
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This means that |A(t + 1)| < σ̃2
0η
3 , so (A(t+1), B(t+1)) remains in R3. For any t′ ≥ t, A(t′) shows 2-periodic

behavior switching between positive and negative signs, that is, for any i ∈ Z≥0, we have

A(t + 2i) = A(t) and sign(A(t + 2i)) = sign(A(t)) = − sign(A(t + 2i + 1)). (33)

The behavior of B is different across the three subpartitions, so we analyze them separately.

Analysis of R32: Because all subpartitions are non-overlapping, for any (A(t), B(t)) in R32, there exists a
unique k ∈ Zeven−{0} such that A(t) and B(t) satisfies |A(t)| >

∣∣B(t) + kσ̃2
1η

∣∣. Next, we show that starting
from any (A(t), B(t)) in R32, after |k| iterations of signGD update, we have |A(t + |k|)| > |B(t + |k|)|, which
means that (A(t + |k|), B(t + |k|)) is in R31.

This can be proved by showing that |A(t + |k|)| = |A(t)| and |B(t + |k|)| =
∣∣B(t) + kσ̃2

1η
∣∣. For any t′ ≥ t,

A(t′) shows 2-periodic behavior, and because k is an even number, we have |A(t + |k|)| = |A(t)|.

Since
∣∣B(t) + kσ̃2

1η
∣∣ > 0 and B(t + 1) = B(t)− sign[B(t)]σ̃2

1η, we know that the sign of B remains the same
for the next |k| − 1 updates. This means that

B(t + |k|) = B(t)−
|k|−1∑
i=0

sign[B(t + i)]σ̃2
1η = B(t)− |k| sign[B(t)]σ̃2

1η.

By the definition of the subpartition, we have σ̃2
0η
3 >

∣∣B(t) + kσ̃2
1η

∣∣; and this is true if and only if B(t) and
k have opposite signs because k is a non-zero even integer. Therefore, we have

|B(t + |k|)| =
∣∣B(t)− |k| sign[B(t)]σ̃2

1η
∣∣

=
∣∣B(t)− |k| (− sign[k])σ̃2

1η
∣∣

=
∣∣B(t) + |k| sign[k]σ̃2

1η
∣∣

=
∣∣B(t) + kσ̃2

1η
∣∣ .

Analysis of R33: Similarly, for any (A(t), B(t)) in R33, there exists a unique k ∈ Zodd such that A(t)
and B(t) satisfies |A(t)|+

∣∣B(t) + kσ̃2
1η

∣∣ <
σ̃2

0η
3 . Again, we show that starting from any (A(t), B(t)) in R33,

after |k| iterations of signGD update, (A(t + |k|), B(t + |k|)) is in R31. This can be proved by showing that
σ̃2

0η
3 − |A(t)| ≤ |A(t + |k|)| and

∣∣B(t) + kσ̃2
1η

∣∣ = |B(t + |k|)|.

First, by using the same analysis of
∣∣B(t) + kσ̃2

1η
∣∣ in R32, we have

∣∣B(t) + kσ̃2
1η

∣∣ = |B(t + |k|)|. Next, the
behavior of A(t) follows (32), which means that for any t′ ≥ t, A(t′) shows 2-periodic behavior, and because
k is an odd number, we have |A(t + |k|)−A(t)| = |A(t + 1)−A(t)| = σ̃2

0η
3 .

Also, we have |A(t + |k|)−A(t)| ≤ |A(t + |k|)| + |A(t)|, which means that σ̃2
0η
3 ≤ |A(t + |k|)| + |A(t)|, or

σ̃2
0η
3 − |A(t)| ≤ |A(t + |k|)|. Combining with the definition of the subpartition, we have

|B(t) + |k|| < σ̃2
0η

3 − |A(t)| ≤ |A(t + |k|)| .

Therefore, starting from any (A(t), B(t)) in R33, after |k| iterations of signGD updates, we have |A(t + |k|)| >
|B(t + |k|)|, which together with the fact that |A(t + |k|)| <

σ̃2
0η
3 as shown before, implies that (A(t +

|k|), B(t + |k|)) is in R31.

Analysis of R34: Finally, we prove, by contradiction, that for any (A(t), B(t)) in R34, there is no t′ > t
such that (A(t′), B(t′)) in R31. Suppose that (A(t′), B(t′)) enters R31, then k ≜ t′− t must be either an odd
number or an even number. By the definition of the subpartition, if k is a non-zero even number, it means
that (A(t), B(t)) must be in R32; whereas if k is an odd number, it means that (A(t), B(t)) must be in R33.
Neither is possible since all subpartitions are non-overlapping, so for any (A(t), B(t)) in R34, (A(t′), B(t′))
remains in R34 for all t′ ≥ t. This means that there will always be a non-zero update on B, and this allows
us to apply Lemma E.2. For any (A(t), B(t)) in R34, there exists t such that |B(t′)| ≤ σ̃2

1η for all t′ ≥ t.
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Combining Proposition E.1 and the dynamics of (A, B) in the stationary subpartitions described in Propo-
sition E.4, we have the following remark.

Remark E.5. The asymptotic solution of A oscillates in [− 2σ̃2
0η

3 ,
2σ̃2

0η
3 ], which is a tighter bound compared to

the one in Proposition E.3. The asymptotic solution of B either remains constant in [−σ̃2
1η, σ̃2

1η] (1 and 2c in
Proposition E.4) or oscillates in [−σ̃2

1η, σ̃2
1η] (3c in Proposition E.4). Since A(t) and B(t) denote

√
3

3 σ̃2
0 ẽ0(t)

and
√

2
2 σ̃2

1 ẽ1(t), respectively, this means that lim supt→∞ |ẽ0(t)| = 2
√

3
3 η, and lim supt→∞ |ẽ1(t)| =

√
2η,

From the dynamics of (A, B) in the transient subpartitions described in Proposition E.4, we have the following
corollary.

Corollary E.6. Suppose that ẽ0 enters [−
√

3η,
√

3η] at iteration t, then A starts exhibiting a 2-periodic
oscillation at most 3 iterations after t. This means that the maximum difference between the number of
positive and negative A’s after iteration t is 2:

∣∣∑∞
i=t+1 I {sign[A(i)] = 1} − I {sign[A(i)] = −1}

∣∣ ≤ 2.

E.8.2 Dynamics of ẽ2 under signGD

We are now ready to analyze the dynamics of ẽ2 through the behavior of ẽ0 and ẽ1. Particularly, we
demonstrate that the final value of |ẽ2| is affected by the magnitude of |ẽ0(0)| and |ẽ1(0)|. First, notice that
the update direction along ẽ2 follows the opposite of the sign of ẽ0, and at every iteration when |A(t)| ≤ |B(t)|,
there is a non-zero weight adaptation for ẽ2. Once the oscillation begins for ẽ0, the dynamics of ẽ0 and ẽ2
become similar. Consider T as the first iteration when |ẽ0| drops below

√
3η. We then have

lim sup
t→∞

|ẽ2(t)| =

∣∣∣∣∣ẽ2(T ) + η

∞∑
t=T +1

{
I {|A(t)| < |B(t)|} −

√
6

3 + I {|A(t)| = |B(t)|} −
√

6
6

}
sign[ẽ0(t)]

∣∣∣∣∣
≤ |ẽ2(T )|+

√
6

3 η

∣∣∣∣∣
∞∑

t=T +1
sign[ẽ0(t)]

∣∣∣∣∣
≤ |ẽ2(T )|+ 2

√
6

3 η, (34)

where we use Corollary E.6 to upper bound the absolute value of the summation of the sign of ẽ0 after the
T -th iteration in the last inequality. This means that after T iterations, ẽ2 stays in an O(η) neighborhood of
ẽ2(T ); in other words, w̃2 stays in an O(η) neighborhood of w̃2(T ). Also, notice that (34) does not include
I {|A(t)| > |B(t)|} since ẽ2 is updated only when |A(t)| ≤ |B(t)|, as shown in Table 9.

Define ∆w̃2 as the sum of all the updates in w̃2 up to the T -th iteration:

∆w̃2 ≜ η

T −1∑
t=0

{
I {|A(t)| < |B(t)|} −

√
6

3 + I {|A(t)| = |B(t)|} −
√

6
6

}
sign[ẽ0(t)], (35)

which leads to

lim sup
t→∞

|w̃2(t)| = |w̃2(T ) + O(η)| = |w̃2(0) + ∆w̃2 + O(η)| , (36)

where w̃2(0) is the weight at initialization.

Putting (36) together with Remark E.5, the asymptotic solution found by signGD is

w̃signGD =
[
w̃∗

0 , w̃∗
1 , w̃2(0) + ∆w̃2

]⊤ + O(η). (37)
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From the perspective of training under the standard risk, the signGD solution is close to the optimum.
Specifically, its standard risk is

Rs(w̃signGD) = E
[
ℓ(X̃, Y ; w̃signGD)

]
= 1

2E
[〈

X̃ , w̃signGD − w̃∗ 〉2]
= 1

2

(
E

[
X̃2

0
]

(w̃signGD
0 − w̃∗

0)2 + E
[
X̃2

1
]

(w̃signGD
1 − w̃∗

1)2
)

(38)

= 1
2

(
σ̃2

0O(η2) + σ̃2
1O(η2)

)
= O((σ̃2

0 + σ̃2
1)η2),

where E
[
X̃0X̃1

]
= 0 in (38) due to the diagonality of Σ̃. Note that the standard risk of the GD solution is

exactly zero; and by choosing a small learning rate η, the standard risk of the signGD solution can be close
to zero as well. However, their adversarial risks are very different. Specifically, the adversarial risk of the
asymptotic signGD solution is

Ra(w̃signGD) = ϵ2

2 ||w̃
signGD||22 = ϵ2

2
{

w̃∗2
0 + w̃∗2

1 + (w̃2(0) + ∆w̃2)2 + O(η2)
}

. (39)

Consider a sufficiently small learning rate: η ≪ min{w̃∗
0 , w̃∗

1 , w̃2(0)+∆w̃2}. This means that the contribution
from O(η2) in Ra(w̃signGD) is negligible. Then the adversarial risk of the signGD solution becomes

Ra(w̃signGD) = ϵ2

2
{

w̃∗2
0 + w̃∗2

1 + (w̃2(0) + ∆w̃2)2}
. (40)

We can compare it with the adversarial risk of the asymptotic solution found by GD under the same setup:

Ra(w̃GD) = ϵ2

2
{

w̃∗2
0 + w̃∗2

1 + w̃2
2(0)

}
. (41)

The main difference between the two adversarial risks in (40) and (41) is the difference in weights learned
at the irrelevant frequency. Since their use of irrelevant frequency in the data is under-constrained, neither
algorithm can reduce w̃2 to zero, thereby neither solution is the most robust standard risk minimizer. The
GD solution is sensitive to weight initialization. To understand the ∆w̃2 term in the signGD solution, first
recall that T denotes the first iteration when |ẽ0| drops below

√
3η (or |A| drops below σ̃2

0η), and from
Corollary E.6 we know that w̃0 starts oscillation at most 3 iterations after T . Recall in (36) that O(η) has
been utilized to account for the maximum sign variations, this means that we can consider oscillations which
begin immediately after the T -th update. Suppose that η is small so the sign of ẽ0 would not change before
the oscillation starts, then we have

|∆w̃2| =

∣∣∣∣∣η
T −1∑
t=0

{
I {|A(t)| < |B(t)|} −

√
6

3 + I {|A(t)| = |B(t)|} −
√

6
6

}
sign[ẽ0(t)]

∣∣∣∣∣
=

∣∣∣∣∣η
T −1∑
t=0

{
I {|A(t)| < |B(t)|} −

√
6

3 + I {|A(t)| = |B(t)|} −
√

6
6

}∣∣∣∣∣ ,

which leads to

|∆w̃2| = Cη

T −1∑
t=0

I {|A(t)| ≤ |B(t)|} , (42)

where C denotes some value between
√

6
6 and

√
6

3 , which correspond to always using the smaller and the
larger updates, respectively.
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E.8.3 Dynamics of |∆w̃2| under signGD

There are two factors that can affect the magnitude of
∑T −1

t=0 I {|A(t)| ≤ |B(t)|} in (42): 1) the relative
magnitudes between σ̃2

0 and σ̃2
1 , and 2) the initial values of |ẽ0| and |ẽ1|, or equivalently, the initial values

of |A| and |B|. To analyze this, we divide the set of values of (|A(t)| , |B(t)|) into several partitions: the
set of [0, σ̃2

0η] × R and R × [0, σ̃2
0η] is partitioned into P1 and P2, and the set of [σ̃2

0η,∞) × [σ̃2
0η,∞) is

partitioned differently based on the value of σ̃2
1

σ̃2
0
. Consider a line that travels through the point of (σ̃2

0η, σ̃2
0η)

and has a slope of 3 σ̃2
1

σ̃2
0
. The ratio between σ̃2

0 and σ̃2
1 is particularly useful in analyzing |∆w̃2| because

understanding the position of (|A(0)| , |B(0|) relative to such a line can lead to the value of |B(T − 1)|, that
is, the value of |B| before the oscillation of |A| begins. Since |B| is updated only when |A| ≤ |B|, we have∑T −1

t=0 I {|A(t)| ≤ |B(t)|} = |B(0)|−|B(T −1)|
σ̃2

1η
. The definitions of partitions are

• P1 =
{

(A, B) : |A| < σ̃2
0η

}
,

• P2 =
{

(A, B) : |A| > σ̃2
0η and |B| < σ̃2

0η
}

,

• When σ̃2
1

σ̃2
0

> 1
3 ,

– P3 =
{

(A, B) : σ̃2
0η < |A| < σ̃2

0
3σ̃2

1
(|B|+ (3σ̃2

1 − σ̃2
0)η)

}
,

∗ P31 =
{

(A, B) : (A, B) ∈ P3 and |A|+ σ̃2
0η > |B|

}
,

– P4 =
{

(A, B) : σ̃2
0η < |B| < 3σ̃2

1
σ̃2

0
|A| − (3σ̃2

1 − σ̃2
0)η

}
,

∗ P41 =
{

(A, B) : (A, B) ∈ P4 and |B| < |A| < 2σ̃2
0η

}
,

∗ P42 =

 (A, B) : (A, B) ∈ P4 and |A| > |B| and 2σ̃2
0η < |A| < |B|+(3σ̃2

1−σ̃2
0)η

3
σ̃2

1
σ̃2

0

+ σ̃2
0η

,

• When σ̃2
1

σ̃2
0

< 1
3 ,

– P5 =
{

(A, B) : σ̃2
0η < |A| < |B|

}
,

– P6 =
{

(A, B) : σ̃2
0η < |B| < |A|

}
.

An illustration of partitions is provided in Figure 7, where the two plots demonstrate the two different ways
of dividing the set of [σ̃2

0η,∞) × [σ̃2
0η,∞) based on the value of σ̃2

1
σ̃2

0
. The connection between the values of

(|A(0)| , |B(0)|) and the size of
∑T −1

t=0 I {|A(t)| ≤ |B(t)|} is summarized in the next proposition.
Proposition E.7. Denote T as the iteration when |ẽ0| drops below

√
3η. The value of∑T −1

t=0 I {|A(t)| ≤ |B(t)|} depends on the relative magnitude between σ̃2
0 and σ̃2

1, and the initial values of
|A| and |B|. Specifically, we have

T −1∑
t=0

I {|A(t)| ≤ |B(t)|} =



0 if (|A(0)| , |B(0)|) ∈ (P1
⋃

P2)
T if σ̃2

1
σ̃2

0
> 1

3 and (|A(0)| , |B(0)|) ∈ P3
|B(0)|

σ̃2
1η

+ [ −2σ̃2
0

σ̃2
1

,
−σ̃2

0
σ̃2

1
] if σ̃2

1
σ̃2

0
> 1

3 and (|A(0)| , |B(0)|) ∈ P4

T if σ̃2
1

σ̃2
0

< 1
3 and (|A(0)| , |B(0)|) ∈ P5

|B(0)|−σ̃2
0η

1
3 σ̃2

0η
if σ̃2

1
σ̃2

0
< 1

3 and (|A(0)| , |B(0)|) ∈ P6.

Proof.
We divide the analysis into two main parts: when σ̃2

1
σ̃2

0
> 1

3 and σ̃2
1

σ̃2
0

< 1
3 , corresponding to the left and right

figures in Figure 7. For each case, we analyze the behavior of (A, B) within the partition.
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Figure 7: Analyzing the value of
∑T −1

t=0 I {|A(t)| ≤ |B(t)|} in (42) by partitioning the set of values
of (|A(t)| , |B(t)|), and the relative magnitude between σ̃2

0 and σ̃2
1 determines the partitions on

which the analysis is based. Specifically, the analysis is based on partitions P1, P2, P3 and P4,
when σ̃2

1
σ̃2

0
> 1

3 (left), and on P1, P2, P5 and P6, when σ̃2
1

σ̃2
0

< 1
3 (right). The three smaller subpartitions are

subsets of the main partition, i.e., P31 ⊂ P3 and P41, P42 ⊂ P4, and they are used in the analysis of P4.
The value of

∑T −1
t=0 I {|A(t)| ≤ |B(t)|} when (|A(0)| , |B(0)|) is initialized in each partition is summarized in

Proposition E.7. The two plots are created with σ̃2
0 = σ̃2

1 (left) and σ̃2
0 = 9σ̃2

1 (right), respectively. Note that
those values are chosen for illustration purposes and do not affect the generality of the result. In both plots,
the red dashed line corresponds to |B(t)| = 3 σ̃2

1
σ̃2

0
|A(t)| − (3σ̃2

1 − σ̃2
0)η for |A(t)| ∈ (σ̃2

0η,∞), and the yellow
dashed line corresponds to |B(t)| = |A(t)|. The pink dashed line is parallel to the red dashed line with a
horizontal gap of σ̃2

0η.

Analysis of P1: For any (|A(0)| , |B(0)|) in P1, since |A(0)| is already below σ̃2
0η, we have T = 1 because A

remains in P1. This means that
∑T −1

t=0 I {|A(t)| ≤ |B(t)|} = 0.

Analysis of P2: For any (|A(0)| , |B(0)|) in P2, |A| decreases until it drops below σ̃2
0η, while |B| remains

the same. This means that |A| remains smaller than |B|, so we have I {|A(t)| ≤ |B(t)|} = 0 for all t ∈
{0, . . . , T − 1}. Therefore, we have

∑T −1
t=0 I {|A(t)| ≤ |B(t)|} = 0.

Next, the partitions of the set of [σ̃2
0η,∞]×[σ̃2

0η,∞] are defined differently based on the values of σ̃2
1

σ̃2
0

compared

to 1
3 . This is because when σ̃2

1
σ̃2

0
> 1

3 , it is possible for any (|A(t)| , |B(t)|) satisfying |A(t)| < |B(t)|, there
exists t′ > t such that |A(t′)| > |B(t′)|. In other words, (|A| , |B|) can oscillate above and below the line
defined by |A| = |B|, and this makes analyzing (42) difficult. However, when σ̃2

1
σ̃2

0
< 1

3 , any (|A(t)| , |B(t)|)
that satisfies |A(t)| < |B(t)| will stay above the line defined by |A| = |B|, and this means that |A| will always
get updated by σ̃2

0η
3 and |B| will always get updated by σ̃2

1η. Because of this different behavior, we analyze
these two cases separately by defining different partitions. This corresponds to the left and right figures in
Figure 7. When σ̃2

1
σ̃2

0
> 1

3 , the set of [σ̃2
0η,∞]× [σ̃2

0η,∞] is partitioned into P3 and P4.

Analysis of P3: By definition, any (|A(t)| , |B(t)|) in P3 satisfies 3 σ̃2
1

σ̃2
0
|A(t)| < |B(t)|+ (3σ̃2

1 − σ̃2
0)η. Starting

from any (|A(0)| , |B(0)|) in P3, the values of |A| and |B| decrease at a rate of 1
3 σ̃2

0η and σ̃2
1η, respectively, and

this means that two sides of the inequality decrease at the same rate. Hence, the sequence (|A(t)| , |B(t)|)
remains in P3 for all 0 ≤ t < T − 1. This means that I {|A(t)| ≤ |B(t)|} = 1 for all t ∈ {0, . . . , T − 1}.
Therefore, we have

∑T −1
t=0 I {|A(t)| ≤ |B(t)|} = T .

Analysis of P4: Since (|A(T − 1)| , |B(T − 1)|) must be in P1, we can understand the value
of

∑T −1
t=0 I {|A(t)| ≤ |B(t)|} by considering how any (|A(0)| , |B(0)|) in P4 is transitioned to

(|A(T − 1)| , |B(T − 1)|) in P1. Also, starting from any (|A(t)| , |B(t)|) in P4, we know that |A(t)| −
|A(t + 1)| > 0 and |B(t)| − |B(t + 1)| ≥ 0; hence, the transition from P4 to P1 must be described in
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one of the following scenarios.
Transition to P2 then to P1: In this case, the value of |B| must first drop below σ̃2

0η. Since |B| decreases
only when |A| ≤ |B|, this means that, regardless of the initial value of |A|, the same number of updates is
required to reduce |B(0)| to σ̃2

0η, which is |B(0)|−σ̃2
0η

σ̃2
1η

, and in each update, the condition I {|A(t)| ≤ |B(t)|}
is satisfied.
Transition to P1 directly: For any (|A(t)| , |B(t)|) in P4 that satisfies |B(t)| > |A(t)| (above the yellow
dashed line in Figure 7), since the values of |A| and |B| decrease at a rate of 1

3 σ̃2
0η and σ̃2

1η, respectively,
(|A(t + 1)| , |B(t + 1)|) cannot cross the red dashed line which has a slope of 3 σ̃2

1
σ̃2

0
. Now let us consider any

(|A(t)| , |B(t)|) in P4 that satisfies |B(t)| < |A(t)| (below the yellow dashed line). In this case, |A| decreases
by σ̃2

0η, and the only scenario where (|A(T − 1)| , |B(T − 1)|) ends up in P1 is when σ̃2
0η < |A(T − 2)| < 2σ̃2

0η.
That is, (|A(T − 2)| , |B(T − 2)|) is in P42. When this happens, we have σ̃2

0η < |B(T − 2)| < 2σ̃2
0η;

and because there is no update in |B(T − 2)|, we have σ̃2
0η < |B(T − 1)| < 2σ̃2

0η. Therefore, we have∑T −1
t=0 I {|A(t)| ≤ |B(t)|} ∈ [ |B(0)|−2σ̃2

0η

σ̃2
1η

,
|B(0)|−σ̃2

0η

σ̃2
1η

].

Transition to P3 then to P1: Let us first consider the transition from P4 to P3. Consider t′ such that
(|A(t)| , |B(t)|) is in P4 for 0 ≤ t < t′ and (|A(t′)| , |B(t′)|) is in P3. Following the above analysis (direct
transition to P1), we know that (|A(t′ − 1)| , |B(t′ − 1)|) must satisfy |A(t′ − 1)| > |B(t′ − 1)|, where t′ − 1
is the iteration before transitioning to P3. Also, we know that |A(t′ − 1)| > 2σ̃2

0η otherwise (|A(t′)| , |B(t′)|)
would be in P1. The last condition for such a transition to happen is that the horizontal distance from
|B(t′ − 1)| to the line of |B| = 3 σ̃2

1
σ̃2

0
|A| − (3σ̃2

1 − σ̃2
0)η (the red dashed line) must be smaller than σ̃2

0η. That
is, (|A(t′ − 1)| , |B(t′ − 1)|) is in P41, and (|A(t′)| , |B(t′)|) is in P31. After the transition to P3, the values
of |A| and |B| decrease at a rate of 1

3 σ̃2
0η and σ̃2

1η, respectively, and |B(T − 1)| has a range of [σ̃0η, 2σ̃0η].
Therefore, we have

∑T −1
t=0 I {|A(t)| ≤ |B(t)|} ∈ [ |B(0)|−2σ̃2

0η

σ̃2
1η

,
|B(0)|−σ̃2

0η

σ̃2
1η

].

When σ̃2
1

σ̃2
0

< 1
3 , the set of [σ̃2

0η,∞] × [σ̃2
0η,∞] is partitioned into P5 and P6, as shown in the right figure of

Figure 7.
Analysis of P5: Starting from any (|A(0)| , |B(0)|) in P5, the values of |A| and |B| decrease at a rate
of 1

3 σ̃2
0η and σ̃2

1η, respectively. However, since σ̃2
1

σ̃2
0

< 1
3 , there will not be any 0 ≤ t ≤ T − 1 where

|A(t)| > |B(t)|. This means that I {|A(t)| ≤ |B(t)|} = 1 for all t ∈ {0, . . . , T − 1}. Therefore, we have∑T −1
t=0 I {|A(t)| ≤ |B(t)|} = T .

Analysis of P6: Starting from any (|A(0)| , |B(0)|) in P6, the values of |A| decreases until it becomes
smaller than |B(0)|. Suppose that this happens at iteration t′, that is, |A(t′)| < |B(0)|. Starting from
(|A(t′)| , |B(t′)|) in P5, |A| starts to decrease by σ̃2

0η
3 and |B| starts to decrease by σ̃2

1η. Since σ̃2
1

σ̃2 < 1
3 , this

means that (|A(t)| , |B(t)|) stays in P5 for t ∈ {t′, . . . , T − 2}, until it goes to P1 when |A(T − 1)| < σ̃2
0η.

Therefore, we know that the total change in |A| since t′-th iteration is |A(t′)| − σ̃2
0η = |B(0)| − σ̃2

0η. Since
|A| can only be updated by the amount of σ̃2

0η
3 in P5, we have

∑T −1
t=0 I {|A(t)| ≤ |B(t)|} = |B(0)|−σ̃2

0η
1
3 σ̃2

0η
.

We now use this analysis on the behavior of
∑T −1

t=0 I {|A(t)| ≤ |B(t)|} to compute |∆w̃2|, which plays a role
in the adversarial risk of signGD, as shown in (40). For the initial values of (|A| , |B|) to be in P1 and P2,
the initial errors must be small. However, consider a dataset with a strong task-relevant correlation between
the relevant frequency component of the data and the target, a realistic scenario as we discussed in Sec. 3.2.
In this case, |w̃∗

0 | and |w̃∗
1 | can be large. Additionally, with a weight initialization around zero, such as in

methods by He et al. (2015) and Glorot & Bengio (2010), the initial error |ẽ0(0)| and |ẽ1(0)| can be large
and close to |w̃∗

0 | and |w̃∗
1 | when |w̃∗

0 | ≫ |w̃0(0)| and |w̃∗
1 | ≫ |w̃1(0)|. Because of this, it is less likely for the

initial values of |A(0)| and |B(0)| to be in the P1 partition in Proposition E.7.

Moreover, it is discussed in Sec. 3.1 and later supported empirically in Figure 8 of Appendix G that the
distribution of spectral energy heavily concentrates at the low end of the frequency spectrum and decays
quickly towards higher frequencies. Since σ̃2

i is interpreted as the expected energy of a random variable at
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the i-th frequency, it is reasonable to expect that σ̃2
1

σ̃2
0

< 1
3 and this allows us to further narrow down to

initialization of (|A| , |B|) in P5 and P6.

The proportional relationship between the size of (42) and the magnitude of |ẽ0| and |ẽ1| when σ̃2
1

σ̃2
0

< 1
3 and

(|A| , |B|) is initialized in P5 or P6 can be described in the following proposition.

Proposition E.8. Suppose that the ratio between σ̃2
0 and σ̃2

1 satisfies σ̃2
1

σ̃2
0

< 1
3 . The magnitude of |∆w̃2|

depends on the initial values of |ẽ0| and |ẽ1|, and the resulting |A(0)| and |B(0)|. Specifically, we have

|∆w̃2| =
{√

3C |ẽ0(0)| if |A(0)| < |B(0)|
3

√
2σ̃2

1
2σ̃2

0
C |ẽ1(0)| if |A(0)| > |B(0)| , (43)

where C ∈ [
√

6
6 ,

√
6

3 ] and we neglect the contribution from η.

Proof. From Proposition E.7, under the assumption that σ̃2
1

σ̃2
0

< 1
3 , we have

∑T −1
t=0 I {|A(t)| ≤ |B(t)|} = T

when (|A(0)| , |B(0)|) ∈ P5, and this means that |∆w̃2| = CηT from (42). This also implies that for
t ∈ {0, . . . , T − 1}, we have |A(t)| < |B(t)| and |A(t)| = |A(0)| − t

3 σ̃2
0η.

Since T is defined as the number of iteration required to reduce |A(0)| to σ̃2
0η, T is |A(0)|−σ̃2

0η
1
3 σ̃2

0η
, and we have

|∆w̃2| = CηT = Cη
|A(0)| − σ̃2

0η
1
3 σ̃2

0η
= 3C

√
3

3 σ̃2
0 |ẽ0(0)| − σ̃2

0η

σ̃2
0

= C(
√

3 |ẽ0(0)| − 3η).

From Proposition E.7, when σ̃2
1

σ̃2
0

< 1
3 and (|A(0)| , |B(0)|) is in P6, we have

|∆w̃2| = Cη
|B(0)| − σ̃2

0η
1
3 σ̃2

0η
= 3C

√
2

2 σ̃2
1 |ẽ1(0)| − σ̃2

0η

σ̃2
0

= C(3
√

2σ̃2
1

2σ̃2
0
|ẽ1(0)| − 3η).

Since the initial error |ẽ0(0)| and |ẽ1(0)| are close to |w̃∗
0 | and |w̃∗

1 |, (43) can be written as

|∆w̃2| ≈

{√
3C |w̃∗

0 | if |A(0)| < |B(0)|
3

√
2σ̃2

1
2σ̃2

0
C |w̃∗

1 | if |A(0)| > |B(0)| (44)

Now we can consider the ratio between the adversarial risk of the standard risk minimizers found by GD
(41) and signGD (40) with a three-dimensional input space. We observe that the solution found by signGD
is more sensitive to perturbations compared to the GD solution:

Ra(w̃signGD)
Ra(w̃GD) = w̃∗2

0 + w̃∗2
1 + (w̃2(0) + ∆w̃2)2

w̃∗2
0 + w̃∗2

1 + w̃2
2(0) ≈ 1 + ∆w̃2

2
w̃∗2

0 + w̃∗2
1

,

where we neglect the contribution from w̃2(0) in the approximation since we have assumed that the values
of |w̃∗

0 | and |w̃∗
1 | are large compared to the initialized weight |w̃(0)2|. This leads to

Ra(w̃signGD)
Ra(w̃GD) ≈

1 + C3
w̃∗2

0
w̃∗2

0 +w̃∗2
1

if |A(0)| < |B(0)|

1 + C4
w̃∗2

1
w̃∗2

0 +w̃∗2
1

if |A(0)| > |B(0)| ,

where 1
2 ≤ C3 ≤ 2 and 3

4
σ̃4

1
σ̃4

0
≤ C4 ≤ 3 σ̃4

1
σ̃4

0
.
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E.9 From Irrelevant Frequencies to Spatially Redundant Dimensions

We have demonstrated that when the use of irrelevant frequency is under-constrained, optimizing the stan-
dard training objective can lead to solutions with zero standard risk but are sensitive to perturbations. This
section offers a spatial interpretation of the findings, where we illustrate that signals with irrelevant frequen-
cies contain spatially redundant dimensions when transformed into the spatial domain. Both interpretations
can be used to explain the vulnerability of the solutions.

To illustrate the concept of redundancy in the spatial domain, consider the synthetic dataset with the
distribution defined in Sec. 4.2.2 and the data has a structure of

{
(X̃0, X̃1, 0)

}
in the frequency domain.

Taking the DCT transformation of X̃, we see that the spatial representation of the same dataset is{
(
√

1
3X̃0 +

√
1
2X̃1,

√
1
3X̃0,

√
1
3X̃0 −

√
1
2X̃1)

}
,

where X̃0 and X̃1 are random variables with frequency interpretations. In the spatial domain, redundancy
refers to the existence of dimensions that are highly correlated with each other. The example mentioned
above illustrates that the presence of a single irrelevant frequency in the data distribution corresponds to
the existence of one redundant dimension in the spatial domain. Specifically, within this three-dimensional
dataset, it is possible to express any dimension as a linear combination of the values at the other two
dimensions.

This translation between spectral irrelevance and spatial redundancy can also be observed in the learned
weight. Consider a standard risk minimizer w̃∗ = (w̃∗

0 , w̃∗
1 , 0), whose frequency-domain representation is

w∗ = (
√

1
3w∗

0 +
√

1
2w∗

1 ,

√
1
3w∗

0 ,

√
1
3w∗

0 −
√

1
2w∗

1).

Because of the irrelevance from w̃2, there are multiple other standard risk minimizers. In the spatial domain,
this means w∗ + w̃2w⃗2 with w⃗2 = (

√
1
6 ,−

√
2
3 ,

√
1
6 ) and any choice of w̃2 ∈ R is still a valid standard risk

minimizer.5 When the model trained by signGD has a large weight at w̃2, this implies a large w̃2 for the
weight in the spatial domain. Because w⃗2 and w∗ are orthogonal, we have ∥w∗ + w̃2w⃗2∥2 = ∥w∗∥2 + |w̃2|,
therefore, the weight norm increases as w̃2 gets large, and from (12), models are more vulnerable.

It is important to realize that having irrelevant frequencies is merely a sufficient condition for having spatially
redundant features, but is not a necessary condition. For example, rearranging the dimensions of x and w∗

in the above example still preserves the spatial redundancy in the dataset, and there are still infinitely many
standard risk minimizers. However, it no longer guarantees zero entries in x̃ and w̃∗.

F Future Direction: Studying Model Robustness under Different Optimization
Objectives

The Sharpness-Aware Minimization (SAM) objective, proposed by Foret et al. (2021), has demonstrated
improvements in model robustness both in settings with noisy training labels and against adversarial per-
turbations (Wei et al., 2023).

Understanding the dynamics of the sharpness-aware loss, especially under different optimization algorithms,
can be more involved. Without doing so, notice that the SAM objective in Foret et al. (2021) includes an
ℓ2 regularization term on the weight norm. That is, training with the SAM objective penalizes models for
having large weight norms. This is in line with our findings presented in Sec. 4, where we demonstrate that
a minimum norm standard risk minimizer achieves the most robust standard risk minimizer.

Recent work by Wei et al. (2023) focused on linear models with classification and demonstrated that mini-
mizing ℓSAM alone can lead to adversarially robust models. They designed a synthetic dataset based on the

5The (
√

1
6 , −

√
2
3 ,

√
1
6 ) vector is the DCT basis for the w̃2 term, i.e., C⊤(0, 0, w̃2) = w̃2(

√
1
6 , −

√
2
3 ,

√
1
6 ).
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hypothesis of the robust and non-robust features (Ilyas et al., 2019), and theoretically demonstrated on the
linear classification that minimizing the sharpness-aware loss alone can result in models with larger weight
on the robust features.

An important distinction to highlight between our analysis and that of Wei et al. (2023) is that, while both
work theoretically analyze the adversarial robustness of linear models, our work focuses on models obtained
via different optimization algorithms, while Wei et al. (2023) focuses on models under different optimization
objectives. In our setting, under the same optimization objective, there exist multiple optimal solutions
where their standard risks are identical, but their adversarial risks are different. On the other hand, in
the setting of Wei et al. (2023), each objective has its own optimal solution. These solutions differ not
just in adversarial robustness but also in their standard generalization performance. The two directions
–optimization objectives and algorithms– are orthogonal, and the choice of an objective is independent of
the choice of optimization algorithm. Understanding how models, trained under robustification objectives,
behave when paired with various optimization algorithms is a promising avenue for future directions.

G Additional figures

In Figure 8, we visualize the energy distribution of various datasets containing natural images. Each dataset
contains four plots. The (i, j) coordinate in the first plot represents 1

N

∑N
n=1 |x̃n;(i,j)|, where N is the

number of training images, x̃n is the DCT transformation of xn, and x̃n;(i,j) denotes the amplitude of the
(i, j)-th basis in the n-th sample. In the second plot, we visualize the diagonal values from the first plot:{

1
N

∑N
n=1 |x̃n;(i,i)|

}
i=0,...,d−1

. We observe across all datasets that there is a high concentration of energy in
the low-frequency harmonics and the amplitude of the higher-frequency harmonics becomes almost negligible.
Therefore, we repeat the first two plots in the natural log scale (loge). The (i, j) coordinate in the third plot
represents 1

N

∑N
n=1 log |x̃n;(i,j)|. In the fourth plot, we visualize

{
1
N

∑N
n=1 log |x̃n;(i,i)|

}
i=0,...,d−1

.
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c. CIFAR10
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d. CIFAR100
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f. Caltech101
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Figure 8: Illustration of the spectral energy distribution in natural data. Distribution of the
spectral energy heavily concentrates at low frequencies and decays exponentially towards higher frequencies.
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b. Modified Image.

Figure 9: Examples of modified images used in Observation I. (MNIST) We use a threshold
value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis and their
freqequency basis. In a), we show the original image x and the magnitude of its DCT basis |x̃| in both linear
and log scale. In b), we show images modified by removing DCT basis vectors whose magnitudes are in the
bottom threshold percentage (row 1), the differences between the modified images and the original image
(row 2), the binary mask used to remove the DCT basis: black means removed (row 3), images modified by
removing high-frequency DCT basis vectors (row 4), the differences between the modified images and the
original image (row 5) and the binary mask used to remove the DCT basis: black means removed (row 6).
Notice that the masks in row 6 only depends on the dimension of the images, whereas the masks in row 3
differs from images to images.
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b. Modified Image.

Figure 10: Examples of modified images used in Observation I. (FashionMNIST) We use a thresh-
old value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis and
their freqequency basis. In a), we show the original image x and the magnitude of its DCT basis |x̃| in both
linear and log scale. In b), we show images modified by removing DCT basis vectors whose magnitudes are
in the bottom threshold percentage (row 1), the differences between the modified images and the original
image (row 2), the binary mask used to remove the DCT basis: black means removed (row 3), images mod-
ified by removing high-frequency DCT basis vectors (row 4), the differences between the modified images
and the original image (row 5) and the binary mask used to remove the DCT basis: black means removed
(row 6). Notice that the masks in row 6 only depends on the dimension of the images, whereas the masks in
row 3 differs from images to images.
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b. Modified Image.

Figure 11: Examples of modified images used in Observation I. (CIFAR10) We use a threshold
value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis and their
freqequency basis. In a), we show the original image x and the magnitude of its DCT basis |x̃| in both linear
and log scale. In b), we show images modified by removing DCT basis vectors whose magnitudes are in the
bottom threshold percentage (row 1), the differences between the modified images and the original image
(row 2), the binary mask used to remove the DCT basis: black means removed (row 3), images modified by
removing high-frequency DCT basis vectors (row 4), the differences between the modified images and the
original image (row 5) and the binary mask used to remove the DCT basis: black means removed (row 6).
Notice that the masks in row 6 only depends on the dimension of the images, whereas the masks in row 3
differs from images to images.
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b. Modified Image.

Figure 12: Examples of modified images used in Observation I. (CIFAR100) We use a threshold
value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis and their
freqequency basis. In a), we show the original image x and the magnitude of its DCT basis |x̃| in both linear
and log scale. In b), we show images modified by removing DCT basis vectors whose magnitudes are in the
bottom threshold percentage (row 1), the differences between the modified images and the original image
(row 2), the binary mask used to remove the DCT basis: black means removed (row 3), images modified by
removing high-frequency DCT basis vectors (row 4), the differences between the modified images and the
original image (row 5) and the binary mask used to remove the DCT basis: black means removed (row 6).
Notice that the masks in row 6 only depends on the dimension of the images, whereas the masks in row 3
differs from images to images.
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b. Modified Image.

Figure 13: Examples of modified images used in Observation I. (SVHN) We use a threshold
value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis and their
freqequency basis. In a), we show the original image x and the magnitude of its DCT basis |x̃| in both linear
and log scale. In b), we show images modified by removing DCT basis vectors whose magnitudes are in the
bottom threshold percentage (row 1), the differences between the modified images and the original image
(row 2), the binary mask used to remove the DCT basis: black means removed (row 3), images modified by
removing high-frequency DCT basis vectors (row 4), the differences between the modified images and the
original image (row 5) and the binary mask used to remove the DCT basis: black means removed (row 6).
Notice that the masks in row 6 only depends on the dimension of the images, whereas the masks in row 3
differs from images to images.
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b. Modified Image.

Figure 14: Examples of modified images used in Observation I. (Caltech101) We use a threshold
value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis and their
freqequency basis. In a), we show the original image x and the magnitude of its DCT basis |x̃| in both linear
and log scale. In b), we show images modified by removing DCT basis vectors whose magnitudes are in the
bottom threshold percentage (row 1), the differences between the modified images and the original image
(row 2), the binary mask used to remove the DCT basis: black means removed (row 3), images modified by
removing high-frequency DCT basis vectors (row 4), the differences between the modified images and the
original image (row 5) and the binary mask used to remove the DCT basis: black means removed (row 6).
Notice that the masks in row 6 only depends on the dimension of the images, whereas the masks in row 3
differs from images to images.
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Figure 15: Examples of modified images used in Observation I. (Imagenette) We use a threshold
value of threshold = {10, 30, 50, 70, 90} to modify images based on its magnitude of DCT basis and their
freqequency basis. In a), we show the original image x and the magnitude of its DCT basis |x̃| in both linear
and log scale. In b), we show images modified by removing DCT basis vectors whose magnitudes are in the
bottom threshold percentage (row 1), the differences between the modified images and the original image
(row 2), the binary mask used to remove the DCT basis: black means removed (row 3), images modified by
removing high-frequency DCT basis vectors (row 4), the differences between the modified images and the
original image (row 5) and the binary mask used to remove the DCT basis: black means removed (row 6).
Notice that the masks in row 6 only depends on the dimension of the images, whereas the masks in row 3
differs from images to images.
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Figure 16: The effect of band-limited Gaussian perturbations on the model (additional figures).
Perturbations from the lowest band, i.e., ∆x(0), have a similar effect on all the models, despite being trained
by different algorithms and exhibiting different robustness properties. On the other hand, models’ responses
vary significantly when the perturbation focuses on higher frequency bands.

MNIST FashionMNIST

CIFAR10 CIFAR100

SVHN Caltech101

Imagenette

Figure 17: Images perturbed by additive Gaussian white noise with different variance. For each
dataset, we select the largest variance value from Table 3.
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Figure 18: Images perturbed by ℓ2-norm bounded adversarial perturbation (Croce & Hein,
2020). We select the largest ϵ value from Table 3 to generate ℓ2 bounded perturbations for images in each
dataset. We also compare perturbations generated using models trained by different algorithms.
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Figure 19: Images perturbed by ℓ∞-norm bounded adversarial perturbation (Croce & Hein,
2020). We select the largest ϵ value from Table 3 to generate ℓ∞ bounded perturbations for images in each
dataset. We also compare perturbations generated using models trained by different algorithms.
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